Abstract:
A wavelength detecting apparatus capable of detecting the main wavelength of the light coming into an image capture apparatus and a focus detecting apparatus using the same are disclosed. The wavelength detecting apparatus may include a spectral unit which separates the incoming light according to the respective wavelengths, and may focus the separated light onto a sensor. The main wavelength can be determined based on the wavelength distribution sensed by the sensor. The determined wavelength can be used to further determine amount of adjustment to be made to the defocus amount to compensate for the chromatic aberration associated with the wavelength of the light illuminating the source.
Abstract:
L'invention concerne un dispositif d'imagerie multispectrale comprenant une structure à multi-puits quantiques fonctionnant sur des transitions intersousbandes par absorption d'un rayonnement à une longueur d'onde lambda comprise dans un ensemble de longueurs d'ondes auxquelles est sensible ladite structure, ladite structure comportant une matrice de pixels élémentaires de détection caractérisé en ce que la matrice est organisée en sous-ensembles de quatre pixels élémentaires de détection (Eij), un premier pixel élémentaire de détection (P λ1 ) comportant un premier réseau diffractif (R λ1 ) sensible à un premier sous-ensemble de longueurs d'onde, un second pixel élémentaire de détection (P λ2 ) comportant un second réseau diffractif (R λ2 ) sensible à un second sous-ensemble de longueurs d'onde, un troisième pixel élémentaire de détection (P λ3 ) comportant un troisième réseau diffractif (R λ3 ) sensible à un troisième sous-ensemble de longueur d'ondes, un quatrième pixel élémentaire de détection (P Δλ ) ne comportant pas de réseau diffractif sélectif en longueur d'onde, les premier, second et troisième sous-ensemble de longueurs d'onde appartenant à l'ensemble de longueurs d'onde auquel est sensible ladite structure.
Abstract:
An optical characterisation system is described for characterising optical material. The system typically comprises a diffractive element (104), a detector (106) and an optical element (102). The optical element (102) thereby typically is adapted for receiving an illumination beam, which may be an illumination response of the material. The optical element (102) typically has a refractive surface for refractively collimating the illumination beam on the diffractive element (104) and a reflective surface for reflecting the diffracted illumination beam on the detector (106). The optical element (102) furthermore is adapted for cooperating with the diffractive element (104) and the detector (106) being positioned at a same side of the optical element (102) opposite to the receiving side for receiving the illumination beam.
Abstract:
The invention relates to a method and to an assembly for operating an optical imaging system for detecting the characteristic values of the wavelength-dependent behavior of an illuminated specimen, especially of the emission and/or absorption behavior, preferably of the fluorescence and/or luminescence and/or phosphorescence and/or enzyme-activated light emission and/or enzyme-activated fluorescence, preferably for the purpose of operating a laser scanning microscope. According to the inventive method, the image spot information of the specimen is broken down into its spectral components in a spatially resolved and wavelength-independent manner on the detector end, and for different spectral components at least one summation is made.
Abstract:
An optical spectrum analyzer (20) measures to-be-measured light while carrying out calibration processing for correcting wavelength information of spectrum data of the to-be-measured light by a wavelength information correction device (56) through a storage device (58) based on the spectrum data of reference light that is obtained by causing the reference light whose wavelength is known to be incident on a tunable wavelength filter (25) from light incident devices (21, 22) at all times together with the to-be-measured light. Since the optical spectrum analyzer (20) can continuously measure the to-be-measured light in a wide wavelength range at high speed while maintaining high wavelength accuracy, it can continuously obtain the spectrum data of the to-be-measured light with high wavelength accuracy even if it is installed in a place in which an environment intensely changes.
Abstract:
A monochromator including: a concave mirror which converts incident light into parallel light and emits the parallel light, a plane diffraction grating for diffracting the parallel light emitted from the concave mirror, first reflection means which reflects first light diffracted by the plane diffraction grating and causes the diffracted light to enter the plane diffraction grating as second incident light, second reflection means which reflects second diffracted light and causes the reflected light to enter the plane diffraction grating as third incident light, and an exit slit disposed in the vicinity of a focal point such that third diffracted light is reflected by the first reflection means, to thereby enter the plane diffraction grating as fourth incident light and such that fourth diffracted light is converged at the focal point by the concave mirror, to thereby enable extraction of light having a specific wavelength.
Abstract:
The invention relates to a method and to an assembly for operating an optical imaging system for detecting the characteristic values of the wavelength-dependent behavior of an illuminated specimen, especially of the emission and/or absorption behavior, preferably of the fluorescence and/or luminescence and/or phosphorescence and/or enzyme-activated light emission and/or enzyme-activated fluorescence, preferably for the purpose of operating a laser scanning microscope. According to the inventive method, the image spot information of the specimen is broken down into its spectral components in a spatially resolved and wavelength-independent manner on the detector end, and for different spectral components at least one summation is made.
Abstract:
An optical demultiplexer comprises light input means, a collimator lens, a substrate having a diffraction grating, photodetecting means for receiving light dispersed by the diffraction grating. The diffraction grating is of a reflection type and has a light-transmitting region at least at part of the reflecting surface. The light input means and the photodetecting means are opposed to the reflection diffraction grating through the collimator lens. A method of assembling an optical demultiplexer including an input optical fiber, a collimator lens, a diffraction grating having a reflecting surface which has partly a light-transmitting region, and photodetecting means for receiving light dispersed by the diffraction grating, comprises monitoring the light transmitted through the light-transmitting region and thereby adjusting the position of the optical axis of the diffraction grating.