Abstract:
The invention relates to a method for determining the maximum open circuit voltage (Vco) and the power that can be output by a photoconverter material subject to a measurement light intensity 10, the method including the following steps: measuring the photoluminescent intensity of the material, measuring the absorption rate of the photoconverter material at a second wavelength (λ2) substantially equal to the photoluminescent wavelength of the photoconverter material, determining the maximum open circuit voltage (Vco) of the photoconverter material with the measurement light intensity 10 by means of the absorption rate and the photoluminescent intensity measured at substantially the same wavelength; said invention being characterised in that the light source and the photoconverter material are arranged such that the angular distributions of the rays incident on and emitted by the lit surface of the material and collected by the detector are substantially identical.
Abstract:
A system for calibrating a sensor in a vehicle, such as a space capsule or another space borne apparatus, uses an expandable integrating sphere. A sensor in the vehicle measures the energy from an electromagnetic energy source within the integrating sphere through a calibration window. The expandable fluid impermeable integrating sphere expands when filled with a fluid, such that when filled with the fluid, its interior is viewable through the calibration window. The system includes a source of fluid to fill the integrating sphere and a fluid regulator coupled to the vehicle to determine when to supply the fluid to the integrating sphere to maintain an appropriate gas pressure level with the integrating sphere.
Abstract:
A smoke detector (1) has a spherical chamber (2) including a plurality of holes (15, 17) for allowing smoke and other particles to enter the chamber. The majority of the internal surface (3) of the chamber (2) is covered with a high reflectivity Lambertian surface, that is a material that scatters incident light equally in all directions and at all wavelengths. The remaining portion of the internal surface (3) is coated with a light absorbing material (13) such as a matt black coating. A scatter sensor (9) is directed towards the absorbing coating (3), and an integrating detector (5) is configured to detect radiation directly from the entire Lambertian surface. A first LED (19) emits blue light into the chamber (2), and a second LED (21) emits infrared light into the chamber. Processing means (23, 25 and 27) are provided to analyse the signals from the detectors (5, 9), including means for discriminating between signals from the sensors indicative of different frequencies of received radiation. The processing means can distinguish between different smoke types, such as white/grey smoke and black smoke, and can also distinguish between smoke and other particles.
Abstract:
Eine Messeinrichtung (100) zur spektroskopischen Untersuchung einer Probe (1, 2), insbesondere einer partikulären Pflanzenprobe, einer zusammengesetzten Pflanzenprobe mit festen und flüssigen Bestandteilen oder einer flüssigen Pflanzenprobe, umfasst eine Beleuchtungseinrichtung (10), die zur spektral aufgelösten Beleuchtung der Probe eingerichtet ist, eine Probenhalterungseinrichtung (20), und eine Detektoreinrichtung (30) mit einem ersten Detektor (31), der für eine Transmissionsmessung vorgesehen ist, und mit einem zweiten Detektor (32), der für eine Reflektionsmessung vorgesehen ist, wobei die Beleuchtungseinrichtung (10) und die Detektoreinrichtung (30) so angeordnet sind, dass mit den ersten und zweiten Detektoren (31, 32) die Transmission und die Reflektion der Probe (1, 2) in einem gemeinsamen Messvorgang messbar sind. Es wird auch ein Verfahren zur spektroskopischen Untersuchung einer Probe (1, 2) beschrieben.
Abstract:
A system for calibrating a sensor in a vehicle, such as a space capsule or other space borne apparatus, uses an expandable integrating sphere. A sensor in the vehicle measures the energy from an electromagnetic energy source within the integrating sphere through a calibration window. The expandable fluid impermeable integrating sphere expands when filled with a fluid, such that when filled with the fluid, its interior is viewable through the calibration window. The system includes a source of fluid to fill the integrating sphere and a fluid regulator coupled to the vehicle to determine when to supply the fluid to the integrating sphere to maintain an appropriate gas pressure level with the integrating sphere.
Abstract:
Systems, methodologies, media, and other embodiments associated with color measuring are described. One exemplary system embodiment includes a spectrophotometer (100), one or more light sources (110) for illuminating an interior of the spectrophotometer (100), and a digital camera (105) configured at a port (125) of the spectrophotometer and being configured to measure light components from a sample (115). In the present invention, segmentation logic is provided for the spectrophotometer that is configured to employ computational image segmentation to characterize specular reflection from a sample and to characterize a selected patch or portion from the test sample, such as a selected color in a multicolor pattern. In accordance with the present invention, the spectrophotometer (100) and the included digital camera (105) may be color-characterized in situ.
Abstract:
The invention is directed to a method for non-destructive determination of the refractive index of un-pigmented or transparently pigmented coatings or of binder systems comprising the following steps:
A) application of a transparent layer of an un-pigmented or transparently pigmented coating or an un-pigmented binder system onto a darkly pigmented substrate; B) optional drying and/or curing of the coating obtained; C) acquisition of the reflection spectrum of the coating obtained with a spectrophotometer with d/8° measurement geometry with the specular component included and with the specular component excluded; D) determination of the differential spectrum between the reflection spectrum with the specular component included and reflection spectrum with the specular component excluded; and E) determination of the refractive index of the coating or binder system with the assistance of the differential spectrum obtained in D) by making use of a previously determined relationship between the difference in the reflection spectrum with the specular component included and the reflection spectrum with the specular component excluded of the coating or binder system and the refractive index of the corresponding coating or binder system.
Abstract:
A method to change the color of hair. The method includes measuring an initial reflectance spectrum [Fig 1a (10)] of a sample of the hair and analyzing a contribution of a plurality of hair factors to the initial reflectance spectrum. The method also includes calculating a hair treatment based on another reflectance spectrum. A system to measure a reflectance spectrum of a sample includes an integrating sphere (12) having a sampling port (14) and an inner surface (16) and a window disposed (18) near the sampling port. The window is configured for being placed in close contact with the sample. The system also includes a light source (20) configured to project light onto the sample via the window and a light detector (22) configured to analyze light reflected from the inner surface (16) to produce the reflectance spectrum of the sample.
Abstract:
A smoke detector (1) has a spherical chamber (2) including a plurality of holes (15, 17) for allowing smoke and other particles to enter the chamber. The majority of the internal surface (3) of the chamber (2) is covered with a high reflectivity Lambertian surface, that is a material that scatters incident light equally in all directions and at all wavelengths. The remaining portion of the internal surface (3) is coated with a light absorbing material (13) such as a matt black coating. A scatter sensor (9) is directed towards the absorbing coating (3), and an integrating detector (5) is configured to detect radiation directly from the entire Lambertian surface. A first LED (19) emits blue light into the chamber (2), and a second LED (21) emits infrared light into the chamber. Processing means (23, 25 and 27) are provided to analyse the signals from the detectors (5, 9), including means for discriminating between signals from the sensors indicative of different frequencies of received radiation. The processing means can distinguish between different smoke types, such as white/grey smoke and black smoke, and can also distinguish between smoke and other particles.