Abstract:
The invention relates to hyperbranched cross-linkable polymers, to a method for their production and to their utilization as coating and binding agents.
Abstract:
The invention relates to a dendritic macromolecule, comprising a core and branches emanating from the core, characterised in that the branches are prepared from vinyl cyanide units. The invention also relates to a process with which the dendritic macromolecule according to the invention can be prepared. The dendritic macromolecules according to the invention are not sensitive to degradation through hydrolysis reactions and are also very stable at a high temperature. The process is very suitable for use on a large scale and the synthesized intermediates do not have to be isolated.
Abstract:
This invention is directed to dense star polymers and to a process for producing dense star polymers. The star polymers of this invention have at least one core branch eminating from a core, each core branch having at least one terminal group provided that (1) the ratio of terminal groups to the core branches is greater than 1 : 1, (2) the density of terminal groups per unit volume in the polymer is at least 1.5 times that of conventional star polymer having similar core and monomeric moieties and a comparable molecular weight and number of core branches, each of such branches of the conventional star polymer bearing only one terminal group and (3) a molecular volume that is no more than 60 percent of the molecular volume of said conventional star polymer. Such star polymers are useful as demulsifiers for oil/water emulsions, wet strength agents in the manufacture of paper and agents for modifying viscosity in aqueous formulations such as paints.
Abstract:
The invention relates to a dendritic macromolecule of the polyester type, which macromolecule is composed of a central initiator molecule or initiator polymer having one or more reactive groups (A), which groups (A) under formation of an initial tree structure are bonded to reactive groups (B) of a monomeric chain extender holding the two reactive groups (A) and (B). The tree structure is potentially extended and further branched from the initiator molecule or initiator polymer by an addition of further molecules of a monomeric chain extender by means of bonding between the reactive groups (A) and (B) thereof and is possibly further extended by a reaction with a chain stopper. The invention also comprises a process for preparation of the dendritic macromolecule and the use of such a macromolecule.
Abstract:
Die vorliegende Erfindung betrifft Mischungen, enthaltend A) Reaktionsprodukte aus Isocyanaten mit NCO-reaktiven Silanen und B) Carbosilan-Dendrimere, ein Verfahren zur Herstellung von Pulverlacken aus den Mischungen und deren Verwendung.
Abstract:
This invention is directed to a polymer having a polyvalent core that is covalently bonded to at least two ordered dendritic (tree-like) branches which extend through at least two generations according to the general formula wherein G is the number of generations and N c represents the valency of the core compound and the Repeat Unit has a valency of N r + 1 wherein N r is the Repeating Unit multiplicity which is at least 2.
Abstract:
This invention is directed to dense star polymers and to a process for producing dense star polymers. The star polymers of this invention have at least one core branch eminating from a core,each core branch having at least oneterminal group provided that (1) the ratio of terminal groups to the core branches is greater than 1 : 1, (2) the density of terminal groups per unit volume in the polymer is at least 1.5 times that of conventional star polymer having similar core and monomeric moieties and a comparable molecular weight and number of core branches, each of such branches of the conventional star polymer bearing only one terminal group and (3) a molecular volume that is no more than 60 percent of the molecular volume of said conventional star polymer. Such star polymers are useful as demulsifiers for oil/water emulsions, wet strength agents in the manufacture of paper and agents for modifying viscosity in aqueous formulations such as paints.
Abstract:
The properties of a thermoformed polymeric article are modified by incorporation of an additive in a thermoplastic/thermoplastic elastic host matrix. The additive comprises a polydispersed hyperbranched polymer (HBP) or a branched monodispersed dendritic polymer (DP). The HBP or DP is linked to a plurality of oligomer chains. The additive migrates to the surface of the article during the thermoforming process.
Abstract:
The present invention relates to sol-gel composition for acrylic polymers-based substrate comprising at least a silane hydrolysate and at least an adhesion promoter comprising a dendritic polymer having hydroxyl and alkoxysilane groups at terminal ends thereof. The present invention also relates to an optical article coated with said sol-gel composition.
Abstract:
A fullerene film and a fullerene polymer both produced from a fullerene derivative are provided which can be easily formed by a wet process and can retain the intact properties inherent in the fullerene. Also provided are processes for producing the film and polymer. A solution of a fullerene derivative decomposing at a temperature lower than the pyrolysis temperature of the fullerene, e.g., the fullerene derivative represented by the following formula, is applied to a substrate. The resultant coating film is heated at a temperature higher than the pyrolysis temperature of the fullerene derivative and lower than a pyrolysis temperature of a fullerene. Thus, a fullerene film and a fullerene polymer are obtained which retain the properties inherent in the fullerene.