摘要:
Disclosed is a transformant prepared by introducing a ketoreductase gene involved in the biosynthesis of L-epivancosamine into an actinobacterium originally capable of producing daunorubicin. Also disclosed is a process of efficiently producing a non-natural daunorubicin derivative using the transformant. The transformant is capable of efficiently producing a non-natural daunorubicin derivative such as epidaunorubicin.
摘要:
Disclosed is an isolated nucleotide sequence encoding an enzyme catalyzing biosynthesis of SAM (SAM-s) and its amino acid sequence. Also, the present invention provides a method for mass production of a useful secondary metabolite including antibiotics using the isolated nucleotide sequence and SAM, where SAM acts as a methyl group donor.
摘要:
The ability to convert daunorubicin into doxorubicin can be improved by transforming a host cell with a recombinant vector comprising a DNA molecule comprising: a DNA region or fragment containing the gene doxA encoding daunorubicin 14-hydroxylase and a DNA region or fragment containing one or more gene conferring daunorubicin and doxorubicin resistance.
摘要:
The ability to convert daunorubicin to doxorubicin can be conferred on a host cell by transformation with a recombinant vector comprising DNA encoding daunorubicin 14-hydroxylase. The host cell can then be used to produce doxorubicin.
摘要:
A process for producing a saccharide carboxylic acid or a salt thereof is characterised in that a microorganism belonging to the genus Pseudogluconobacter and capable of oxidizing a hydroxymethyl group and/or hemiacetal hydroxyl-associated carbon atom to a carboxyl group, or an artefact derived from the microorganism, is permitted to act on a hydroxymethyl and/or hemiacetal hydroxyl-containing saccharide or saccharide derivative to produce and accumulate the corresponding carboxylic acid, and the carboxylic acid so accumulated is harvested; novel saccharide carboxylic acids produced by the above production method, and by the process, from a broad range of saccharides, saccharic acids having carboxyl groups derived from hydroxymethyl and/or hemiacetal OH groups can be produced with high selectivity and in good yield; the resultant saccharide acids are resistant to enzymatic degradation and have improved water solubility, among other characteristics.