Abstract:
A protective sheath having a closed end and an open end is sized to receive a hand held spectrometer. The spectrometer can be placed in the sheath to calibrate the spectrometer and to measure samples. In a calibration orientation, an optical head of the spectrometer can be oriented toward the closed end of the sheath where a calibration material is located. In a measurement orientation, the optical head of the spectrometer can be oriented toward the open end of the sheath in order to measure a sample. To change the orientation, the spectrometer can be removed from the sheath container and placed in the sheath container with the calibration orientation or the measurement orientation. Accessory container covers can be provided and placed on the open end of the sheath with samples placed therein in order to provide improved measurements.
Abstract:
Ein Verfahren zum Sicherstellen eines Modulationsbereichs einer wellenlängenvariablen Strahlungsquelle im Rahmen der Messung einer Absorptionslinie einer Substanz umfasst: dass die Strahlungsquelle dazu angesteuert wird, Strahlung derart auszusenden, dass die Wellenlänge der Strahlung den Modulationsbereich gemäß einem zeitlichen Muster durchläuft; dass die Strahlung mittels eines Filters gefiltert wird, in dessen Durchlassbereich die Absorptionslinie liegt und das zumindest eine Filterflanke aufweist, deren tatsächliche Wellenlänge innerhalb des Modulationsbereichs liegt; dass ein Spektrum der gefilterten Strahlung ermittelt wird, indem die Intensität der gefilterten Strahlung in Bezug zu dem zeitlichen Muster erfasst wird; und dass festgestellt wird, ob das Spektrum die zumindest eine Filterflanke aufweist.
Abstract:
Methods and systems for spectrometer dark correction are described which achieve more stable baselines, especially towards the edges where intensity correction magnifies any non-zero results of dark subtraction, and changes in dark current due to changes in temperature of the camera window frame are typically more pronounced. The resulting induced curvature of the baseline makes quantitation difficult in these regions. Use of the invention may provide metrics for the identification of system failure states such as loss of camera vacuum seal, drift in the temperature stabilization, and light leaks. In system aspects of the invention, a processor receives signals from a light detector in the spectrometer and executes software programs to calculate spectral responses, sum or average results, and perform other operations necessary to carry out the disclosed methods. In most preferred embodiments, the light signals received from a sample are used for Raman analysis.
Abstract:
Described herein are methods, apparatuses, and systems that enable a light weight autonomous unmanned aerial vehicle (UAV) to process hyperspectral (HSI) data during its flight and send information to the ground computer via radio-link. This capability is not currently available owing to the severe combination of technical constraints: the typical processing power required to analyze HSI data in real time; the small space and power available for the payload in a light-weight UAV; and the limited bandwidth available on the wireless link.
Abstract:
A method for determining spectral calibration data (λcal(Sd), Sd,cal(λ)) of a Fabry-Perot interferometer (100) comprises: - forming a plurality of filtered spectral peaks (P'1, P'2) by filtering input light (LB1) with a Fabry-Perot etalon (50) such that a first filtered peak (Ρ'1) corresponds to a first transmittance peak (P1) of the etalon (50), and such that a second filtered peak (P'2) corresponds to a second transmittance peak (P2) of the etalon (50), - using the Fabry-Perot interferometer (100) for measuring a spectral intensity distribution (M(Sd)) of the filtered spectral peaks (Ρ'1, P'2), wherein the spectral intensity distribution (M(Sd)) is measured by varying the mirror gap (dFP) of the Fabry-Perot interferometer (100), and by providing a control signal (Sd) indicative of the mirror gap (dFP), and - determining the spectral calibration data (λcal(Sd), Sd,cal(λ)) by matching the measured spectral intensity distribution (M(Sd)) with the spectral transmittance (ΤΕ(λ)) of the etalon (50).
Abstract:
A method and an apparatus for increasing the accuracy of a spectrometer system corrects for light source quality, exposure time, distortion in y direction, distortion in x direction, temperature dependence, pixel alignment variability, dark pixels, bad pixels, pixel read noise, and pixel dark current noise. The method and apparatus produces an algorithm for optimizing spectral data and for measuring a sample within the spectrometer system using the optimization algorithm. The spectrometer apparatus comprises a composite external light source, a source light collector, an illumination light structuring component, a sample, a sample light collector, a spectrometer light structuring component, a light dispersing engine, photo detectors, an electrical signal converter, a data preprocessing unit, and a data analyzer. The method and apparatus can include a corrected photo detector algorithm, sample illumination correction algorithm, LDE-PD alignment procedure, SLSC-LDE alignment procedure, distortion correction matrix, and an algorithm for optimizing of spectral data.
Abstract:
Aircraft system and method detecting and present information relating to adverse airborne phenomena along an aircraft flight route. An imaging unit that includes an IR detector and a tunable spectral filter acquires IR images of the external environment, by acquiring wideband IR images when operating in a second mode. A data analysis unit detects and determines characteristics of adverse airborne phenomena in the environment based on at least the spectral signatures of environmental features in the acquired narrowband IR images. A display unit dynamically displays a visual representation of the detected adverse airborne phenomenon and its determined characteristics, overlaid onto a view of the external environment displayed to an operator of the aircraft. The visual representation may include variable visual attributes representing respective categories of characteristics of the detected adverse airborne phenomenon.
Abstract:
An information processing apparatus includes an obtainment unit configured to obtain spectroscopic information generated from image information of a plant captured by an imaging unit; and a generation unit configured to generate a control signal for controlling a degree of water stress of the plant, based on the obtained spectroscopic information.