Abstract:
L'invention a pour objet un module photovoltaïque comprenant au moins une cellule photovoltaïque (CV) et un dispositif optique de concentration (Oc), destiné à être illuminé par un flux lumineux émettant à au moins une longueur d'onde d'illumination (λ i ) appartenant à une bande de longueurs d'onde définie par une longueur d'onde minimale (λ min ) et une longueur d'onde maximale (λ max ), ladite bande de longueurs d'onde étant celle du rayonnement solaire de l'ordre de [380nm-1600nm] caractérisé en ce que : - ledit dispositif optique de concentration est un composant monolithique et comprend au moins une structure diffractive comportant des motifs sub-longueur d'onde, définis dans un matériau dit structuré ; - lesdits motifs ayant au moins une dimension inférieure ou égale à la longueur d'onde moyenne d'illumination λ c située entre λ min et λ max divisée par l'indice de réfraction dudit matériau structuré ; - lesdits motifs étant séparés entre eux par des distances sub-longueur d'onde, définies entre centres de motifs adjacents ; - ledit dispositif optique de concentration assurant au moins une fonction de focalisation et une fonction de diffraction. L'invention a aussi pour objet un panneau solaire comprenant ledit module photovoltaïque.
Abstract:
Various embodiments of apparatuses, systems and methods are described herein for a spectrometer comprising at least two dispersive elements configured to receive at least one input optical signal and generate two or more pluralities of spatially separated spectral components, at least a portion of the at least two dispersive elements being implemented on a first substrate; and a single detector array coupled to the at least two dispersive elements and configured to receive and measure two or more pluralities of narrowband optical signals derived from the two or more pluralities of spatially separated spectral components, respectively.
Abstract:
Various embodiments of apparatuses, systems and methods are described herein related to a spectrometer that can generate a plurality of narrowband optical signals having a wavenumber linear format without using an increased number of optical components and without an increase in signal processing.
Abstract:
A spectroscopic imaging device adjusting method adjusts a relative arrangement relationship among a collimating lens, a diffraction grating, a condensing lens and an array type light receiving part so as to maximize the value of the following expression (1) for an output values f n from respective light receiving sensors P n when monochromatic light is inputted to a spectroscopic imaging device, wherein α > 1 and n is each integer equal to or larger than 1 and equal to or smaller than N. [Expression 1]
Abstract:
Wavenumber linear spectrometers are provided including an input configured to receive electromagnetic radiation from an external source; collimating optics configured to collimate the received electromagnetic radiation; a dispersive assembly including first and second diffractive gratings, wherein the first diffraction grating is configured in a first dispersive stage to receive the collimated electromagnetic radiation and wherein the dispersive assembly includes at least two dispersive stages configured to disperse the collimated input; and an imaging lens assembly configured to image the electromagnetic radiation dispersed by the at least two dispersive stages onto a linear detection array such that the variation in frequency spacing along the linear detection array is no greater than about 10%.
Abstract:
A system and process for automatically characterizing a plurality of external cavity semiconductor laser chips on a semiconductor laser bar separated from a semiconductor wafer. The system includes a diffraction grating and a steering mirror mounted on a rotary stage for rotating the diffraction grating through a range of diffraction angles. A laser bar positioning stage for automatically aligning each laser chip in a laser bar with the diffraction grating. Reflecting a laser beam emitted from a laser chip in a laser bar with diffraction grating and steering mirror to the laser analyzer. Automatically rotating the diffraction grating through a range of diffraction angles relative to the laser beam and automatically characterizing the laser optical properties such as spectra, power, or spatial modes with the laser analyzer at each diffraction angle.
Abstract:
A grating is disclosed for the angular dispersion of light impinging the grating. The grating comprises tapered structures and cavities. A cavity width is varied for achieving a desired grating efficiency. A method is disclosed for conveniently creating gratings with variable cavity width. The method comprises the step of anisotropically etching a groove pattern into a grating master. Optionally a replica is produced that is complementary to the grating master. By variation of an etching resist pattern, the cavity width of the grating may be varied allowing the optimization towards different efficiency goals.