摘要:
The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a cover ring disposed above the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
摘要:
The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a cover ring disposed above the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
摘要:
A method for producing a semiconductor body (3) is specified, comprising the following steps: - providing a semiconductor wafer having at least two chip regions (1) and at least one separating region (2) arranged between the chip regions (1), wherein the semiconductor wafer comprises a layer sequence, the outermost layer of which has, at least within the separating region (2), a transmissive layer (8) that is transmissive to electromagnetic radiation, - carrying out at least one of the following measures: removing the transmissive layer (8) within the separating region (2), applying an absorbent layer (16) within the separating region, increasing the absorption coefficient of the transmissive layer within the separating region, and - separating the chip regions (1) along the separating regions (2) by means of a laser.
摘要:
A support comprises a ceramic supporting surface, on which a circuit board may be placed for cutting to be performed by means of optical radiation generated by a laser. The ceramic supporting surface remains unchanged as said laser radiation hits it.
摘要:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
摘要:
An improved method for singulation of electronic substrates into dice uses a laser to first form cuts in the substrate and then chamfers the edges of the cuts by altering the laser parameters. The chamfers increase die break strength by reducing the residual damage and removes debris caused by the initial laser cut without requiring additional process steps, additional equipment or consumable supplies.
摘要:
An apparatus that comprises a device on a substrate and a crack stop in the substrate. Methods of forming a device are also disclosed. The methods may include providing a device, such as a semiconductor device, on a substrate having a first thickness, reducing the thickness of the substrate to a second thickness, and providing a crack stop in the substrate. Reducing the thickness of the substrate may include mounting the substrate to a carrier substrate for support and then removing the carrier substrate. The crack stop may prevent a crack from reaching the device.
摘要:
On a mask placement-side surface of a semiconductor wafer in which a plurality of semiconductor devices are formed, a mask is placed, while dicing lines for dicing the semiconductor wafer into the respective separate semiconductor devices are defined and a surface of a flawed semiconductor device among the respective semiconductor devices is partially exposed, and then plasma etching is applied to the mask placement-side surface of the semiconductor wafer so as to dice the semiconductor wafer into the respective semiconductor devices along the defined dicing lines, and an exposed portion of the flawed semiconductor device is removed so as to form a removed portion as a flawed semiconductor device distinguishing mark.
摘要:
A semiconductor wafer 11 having an active layer is mounted on a carrier 13 with the active layer away from the carrier and at least partially diced on the carrier from a major surface of the semiconductor wafer. The at least partially diced semiconductor wafer is etched on the carrier from the said major surface with a spontaneous etchant 140 to remove sufficient semiconductor material from a die produced from the at least partially diced semiconductor wafer to improve flexural bend strength of the die by removing at least some defects caused by dicing.
摘要:
Thinning and dicing substrates using inductively coupled plasma reactive ion etching (ICP RIE). When dicing, a hard photo-resist pattern or metal mask pattern that defines scribe lines is formed on a sapphire substrate or on a semiconductor epitaxial layer, beneficially by lithographic techniques. Then, the substrate is etched along the scribe lines to form etched channels. An etching gas comprised of BCl3 and/or BC13/C12 gas is used (optionally, Ar can be added). Stress lines are then produced through the substrate along the etched channels. The substrate is then diced along the stress lines. When thinning, a surface of a substrate is subjected to inductively coupled plasma reactive ion etching (ICP RIE) using BC13 and/or BC13/C12 gas, possibly with some Ar. ICP RIE is particularly useful when working sapphire and other hard substrates.