摘要:
A method of protecting sidewalls a plurality of semiconductor devices is disclosed. The method includes fabricating the plurality of semiconductor devices on a semiconductor wafer, etching to form a trench grid network on the backside of the semiconductor wafer. The trench grid network demarcate physical boundaries of each of the plurality of semiconductor devices. The method also includes depositing a protective layer on the backside and etching to remove the protective layer from horizontal surfaces and to singulate each of the plurality of semiconductor devices from the semiconductor wafer.
摘要:
A method of packing a semiconductor device is disclosed. The method includes placing a wafer on a carrier such that a backside of the wafer is facing up and a front side is facing down and non-permanently affixed to the surface of the carrier, performing lithography to mark area to be etched on the backside of the wafer, etching the marked areas from the backside of the wafer thus forming trenches that mark boundaries of individual devices on the wafer, applying a protective coating on the backside of the wafer thus filling the trenches and entire backside of the wafer with a protective compound and cutting the individual devices from the wafer.
摘要:
The present invention provides mark structures and fabrication methods thereof. An exemplary fabrication process includes providing a substrate having a device region, a first mark region and a second mark region; sequentially forming a device layer, a dielectric layer and a mask layer on a surface of the substrate; forming a first opening in the dielectric layer in the device region, a first mark in the dielectric layer in the first mark region, and a mark opening in dielectric layer in the second mark region, bottoms of the first opening, the first mark and the mark opening being lower than a surface of the dielectric layer, and higher than a surface of the device layer; and forming a second opening in the dielectric layer on the bottom of the first opening and a second mark in the dielectric layer on the bottom of the mark opening.
摘要:
A semiconductor memory package is provided. The package includes a semiconductor die having a first die portion (100a) and a second die portion (100c). A -passivation layer (102) is on the semiconductor die (100). A first post-passivation interconnect (PPI) structure includes pluralities of first and second pads (104,106) arranged in first and second tiers (201, 202), respectively. The first and second pads (104, 106) are disposed on a first die (100a) portion of the semiconductor die (100). A second PPI structure includes pluralities of third and fourth pads (108,110) arranged in third and fourth tiers (203, 204), respectively. The third and fourth pads (108,110) are disposed on a second die portion (100b) of the semiconductor die (100). One of the first pads (104) and one of the fourth pads (110) are coupled to each other by a first bonding wire (120). One of the second pads (106) and one of the third pads (110) are coupled to each other by a second bond wire (130).
摘要:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
摘要:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
摘要:
The cost associated with alignment in a stacked IC device can be reduced by aligning multiple die instead of a single die during the alignment step. In one embodiment, the alignment structures are placed in the scribe line instead of within the die itself. Aligning four die instead of one eliminates the need for as many alignment indicators and thus more silicon on the wafer can be used for active areas. In addition, this method allows for yield improvement through binning of dies having the same yield configuration.
摘要:
The present invention relates to a method for thermal stress reduction on a wafer, comprising the steps of providing a patterned wafer with saw lanes between adjacent dies, forming thin holes within the silicon substrate, which holes create a dotted groove in the saw lanes, and wherein no second layer on an opposing side of the wafer is formed, a patterned wafer obtained by said method. The forming of the holes is preferably combined with other processing steps or another step to avoid additional operations and manipulations prior to, or after standard wafer processing, and it therefore optimizes fabrication quality and costs. Preferably the holes within the silicon substrate having a depth of more than 3 to 50 μm, preferably from 5-40 μm, like 20 μm.
摘要:
In formation of monolithic three dimensional memory arrays, a photomask may be used more than once. Reuse of a photomask creates second, third or more instances of reference marks used by the stepper to achieve alignment (alignment marks) and to measure alignment achieved (overlay marks) directly above prior instances of the same reference mark. The prior instances of the same reference mark may cause interference with the present instance of the reference mark, complicating alignment and measurement. Using the methods of the present invention, blocking structure is created vertically interposed between subsequent instances of the same reference mark, preventing interference.