摘要:
A corona-discharge type, preionizer assembly for a gas discharge laser is disclosed. The assembly may include an electrode and a hollow, dielectric tube that defines a tube bore. In one aspect, the electrode may include a first elongated conductive member having a first end disposed in the bore of the tube. In addition, the electrode may include a second elongated conductive member having a first end disposed in the bore and spaced from the first end of the first conductive member. For the assembly, the first and second conductive members may be held at a same voltage potential.
摘要:
A corona-discharge type, preionizer assembly for a gas discharge laser is disclosed. The assembly may include an electrode and a hollow, dielectric tube that defines a tube bore. In one aspect, the electrode may include a first elongated conductive member having a first end disposed in the bore of the tube. In addition, the electrode may include a second elongated conductive member having a first end disposed in the bore and spaced from the first end of the first conductive member. For the assembly, the first and second conductive members may be held at a same voltage potential.
摘要:
According to aspects of an embodiment of the disclosed subject matter, method and apparatus are disclose that ma y comprise adjusting a differential timing between gas discharges in the seed laser and amplifier laser for bandwidth control, based on the error signal, or for control of another laser operating parameter other than bandwidth, without utilizing any beam magnification control, or adjusting a differential timing between gas discharges in the seed laser and amplifier laser for bandwidth control, based on the error signal, or for control of another laser operating parameter other than bandwidth, while utilizing beam magnification control for other than bandwidth control, and adjusting a differential timing between gas discharges in the seed laser and amplifier laser for bandwidth control, based on the error signal, or for control of another laser operating parameter other than bandwidth, while utilizing beam magnification control for bandwidth control based on the error signal.
摘要:
An LPP EUV light source is disclosed having an optic positioned in the plasma chamber for reflecting EUV light generated therein and a laser input window. For this aspect, the EUV light source may be configured to expose the optic to a gaseous etchant pressure for optic cleaning while the window is exposed to a lower gaseous etchant pressure to avoid window coating deterioration. In another aspect, an EUV light source may comprise a target material positionable along a beam path to participate in a first interaction with light on the beam path; an optical amplifier; and at least one optic directing photons scattered from the first interaction into the optical amplifier to produce a laser beam on the beam path for a subsequent interaction with the target material to produce an EUV light emitting plasma.
摘要:
An EUV plasma formation target delivery system and method is disclosed which may comprise: a target droplet formation mechanism comprising a magneto-restrictive or electro-restrictive material, a liquid plasma source material passageway terminating in an output orifice; a charging mechanism applying charge to a droplet forming jet stream or to individual droplets exiting the passageway along a selected path; a droplet deflector intermediate the output orifice and a plasma initiation site periodically deflecting droplets from the selected path, a liquid target material delivery mechanism comprising a liquid target material delivery passage having an input opening and an output orifice; an electromotive disturbing force generating mechanism generating a disturbing force within the liquid target material, a liquid target delivery droplet formation mechanism having an output orifice; and/or a wetting barrier around the periphery of the output orifice.
摘要:
An aspect of the disclosed subject matter includes a method of reducing the laser absorption of a beam reverser prism consisting of at least one of the following: increasing a first distance between a first incident point and a chamfered corner, wherein the first incident point is on a first reflective surface of the prism and the chamfered corner is formed between the first reflective surface and a second reflective surface of the prism, wherein the chamfered corner has a chamfered surface; increasing a second distance between a second incident point and the chamfered corner, wherein the second incident point is on the second reflective surface of the prism; and increasing a reflectivity of the chamfered surface of the chamfered corner of the prism. A method of determining a prime cut for an optical component is also disclosed. A laser including at least one prime cut optical component is also disclosed.