摘要:
A cooling system includes a heat exchanger having one or more rows of multiple flat tubes, louvered fins disposed between pairs of flat tubes, and special header tube connections to form a counter flow heat exchanger. Heat exchangers having multiple rows may be placed near or close to the server racks and may be in fluid communication with an outdoor heat exchanger having one or more rows. A single-phase fluid is pumped through the fluid circuit or loop, which includes the heat exchangers at the server racks and the outdoor heat exchanger. The single-phase fluid circuit including the heat exchangers at the IT racks may alternatively be in thermal communication with a water circuit that includes an outdoor fluid cooler. The flat tubes can be formed tubes with one or more channels, or extruded tubes with multiple channels. The heat exchangers include header tubes/connections, which facilitate easy fabrication and connection between rows and inlet/outlet, and lower the pressure drop.
摘要:
A space-saving, high-density modular data pod system and an energy-efficient cooling system are disclosed. The modular data pod system includes a central free-cooling system and a plurality of modular data pods, each of which includes a heat exchange assembly coupled to the central free-cooling system, and a distributed mechanical cooling system coupled to the heat exchange assembly. The modular data pods include a data enclosure having at least five walls arranged in the shape of a polygon, a plurality of computer racks arranged in a circular or U-shaped pattern, and a cover to create hot and cold aisles, and an air circulator configured to continuously circulate air between the hot and cold aisles. Each modular data pod also includes an auxiliary enclosure containing a shared fluid and electrical circuit section that is configured to connect to adjacent shared fluid and electrical circuit sections to form a shared fluid and electrical circuit that connects to the central free-cooling system. The auxiliary enclosure contains at least a portion of the distributed mechanical cooling system, which is configured to trim the cooling performed by the central free-cooling system.
摘要:
Control systems for a multi-level diode-clamped inverter and corresponding methods include a processor and a digital logic circuit forming a hybrid controller. The processor identifies sector and region locations based on a sampled reference voltage vector V* and angle θe*. The processor then selects predefined switching sequences and pre-calculated turn-on time values based on the identified sector and region locations. The digital logic circuit generates PWM switching signals for driving power transistors of a multi-level diode-clamped inverter based on the turn-on time values and the selected switching sequences. The control system takes care of the existing capacitor voltage balancing issues of multi-level diode-clamped inverters while supplying both active and reactive power to an IT load. Using the control system, one can generate a symmetrical PWM signal that fully covers the linear under-modulation region.
摘要:
A system for cooling electronic equipment includes first and second heat exchangers and a condenser. The first exchanger is disposed in an airflow in thermal communication with electronic equipment and is configured to receive a cooling fluid at a first temperature. The first exchanger enables heat transfer from the airflow to the cooling fluid to heat the cooling fluid to a second temperature. The second exchanger is disposed in the airflow between the first exchanger and the electronic equipment and is configured to receive the cooling fluid at the second temperature. The second exchanger enables heat transfer from the airflow to the cooling fluid to heat the cooling fluid to a third temperature. The condenser is configured to receive the cooling fluid at the third temperature and is configured to enable heat transfer from the cooling fluid to a cooling source to cool the cooling fluid to the first temperature.
摘要:
The cooling systems and methods of the present disclosure relate to a plural in-series pumped liquid refrigerant trim evaporator cycle that may be incorporated into an existing cooling system to increase the efficiency of the existing cooling system. The cooling systems of the present disclosure include a first evaporator coil in thermal communication with an air intake flow to a heat load, such as a heat load being cooled by the existing cooling system, and a first liquid refrigerant distribution unit in thermal communication with the first evaporator coil. The cooling systems further includes a second evaporator coil disposed in series with the first evaporator coil in the air intake flow and in thermal communication with the air intake flow, and a second liquid refrigerant distribution unit in thermal communication with the second evaporator coil. A trim compression cycle of the second liquid refrigerant distribution unit is configured to incrementally further cool the air intake flow through the second evaporator coil when the temperature of the free-cooled first fluid flowing out of the main compressor of the second liquid refrigerant distribution unit exceeds a predetermined threshold temperature.
摘要:
Control systems for a multi-level diode-clamped inverter and corresponding methods include a processor and a digital logic circuit forming a hybrid controller. The processor identifies sector and region locations based on a sampled reference voltage vector V* and angle θ e *. The processor then selects predefined switching sequences and pre-calculated turn-on time values based on the identified sector and region locations. The digital logic circuit generates PWM switching signals for driving power transistors of a multi-level diode-clamped inverter based on the turn-on time values and the selected switching sequences. The control system takes care of the existing capacitor voltage balancing issues of multi-level diode-clamped inverters while supplying both active and reactive power to an IT load. Using the control system, one can generate a symmetrical PWM signal that fully covers the linear under-modulation region.
摘要:
A space-saving, high-density modular data pod system and an energy-efficient cooling system are disclosed. The modular data pod system includes a central free-cooling system and a plurality of modular data pods, each of which includes a heat exchange assembly coupled to the central free-cooling system, and a distributed mechanical cooling system coupled to the heat exchange assembly. The modular data pods include a data enclosure having at least five walls arranged in the shape of a polygon, a plurality of computer racks arranged in a circular or U-shaped pattern, and a cover to create hot and cold aisles, and an air circulator configured to continuously circulate air between the hot and cold aisles. Each modular data pod also includes an auxiliary enclosure containing a shared fluid and electrical circuit section that is configured to connect to adjacent shared fluid and electrical circuit sections to form a shared fluid and electrical circuit that connects to the central free-cooling system. The auxiliary enclosure contains at least a portion of the distributed mechanical cooling system, which is configured to trim the cooling performed by the central free-cooling system.
摘要:
A modular server rack cooling structure for cooling at least one server in at least one server rack of a data center assembly includes at least a first supporting member and at least a first heat exchanger. The first heat exchanger is coupled to the first supporting member, which is configured to position the first heat exchanger in heat transfer relationship with the at least one server. The first heat exchanger is not attached to the at least one server rack. The modular server rack cooling structure is also applied to a system that includes at least a first rack and at least a second rack disposed opposite from one another to form a hot aisle or a cold aisle. A method is disclosed for installing additional heat exchangers on the support structure of a modular server rack cooling structure to meet increased cooling capacity requirements without requiring additional space.