SYSTEMS AND METHODS FOR MITIGATING HEAT REJECTION LIMITATIONS OF A THERMOELECTRIC MODULE
    4.
    发明公开
    SYSTEMS AND METHODS FOR MITIGATING HEAT REJECTION LIMITATIONS OF A THERMOELECTRIC MODULE 审中-公开
    系统和方法,以减少热电模块的散热极限

    公开(公告)号:EP3172503A1

    公开(公告)日:2017-05-31

    申请号:EP15747314.1

    申请日:2015-07-21

    IPC分类号: F25B21/02 F25B49/00

    摘要: Systems and methods for mitigating heat rejection limitations of a thermoelectric module are disclosed. In some embodiments, a method of operating a thermoelectric module includes providing a first amount of power to the thermoelectric module and determining that a temperature of a hot side of the thermoelectric module is above a first threshold. The method also includes, in response to determining that the temperature of the hot side is above the first threshold, providing a second amount of power to the thermoelectric module that is less than the first amount of power. The method also includes determining that the temperature of the hot side of the thermoelectric module is below a second threshold and providing a third amount of power to the thermoelectric module. In some embodiments, this mitigates heat rejection limitations of the thermoelectric module, especially when the hot side of the thermoelectric module is passively cooled.

    摘要翻译: 用于操作的热电模块,以提高效率的系统和方法游离缺失光盘。 在一些实施例中,一种操作热电模块的方法,包括确定性采矿功率的第一量确实会最大化的基于一个或更多个系统参数的热电模块的性能系数和提供功率的所述第一量与热电模块。 因此,该方法包括:确定挖掘并在一个或多个系统参数中的至少一个发生了变化,确定性采矿功率的第二量确实会最大化的基础上,一个或更多个系统参数的热电模块的性能系数,并且提供所述第二量 功率与热电模块。 在一些实施方式中,调整电力的量基于所述一个或多个系统参数只要提高热电模块的效率。

    HIGH-EFFICIENCY POWER CONVERSION ARCHITECTURE FOR DRIVING A THERMOELECTRIC COOLER IN ENERGY CONSCIOUS APPLICATIONS
    5.
    发明公开
    HIGH-EFFICIENCY POWER CONVERSION ARCHITECTURE FOR DRIVING A THERMOELECTRIC COOLER IN ENERGY CONSCIOUS APPLICATIONS 审中-公开
    高效的功率转换架构,用于驱动热电冷却器能源感知应用程序

    公开(公告)号:EP3152827A1

    公开(公告)日:2017-04-12

    申请号:EP15731179.6

    申请日:2015-06-08

    IPC分类号: H02M7/23 F25B21/02

    摘要: Systems and methods are disclosed herein relating to an Alternating Current-Direct Current (AC-DC) power conversion system for supplying power to one or more Thermoelectric Coolers (TECs). In some embodiments, a system comprises one or more TECs and an AC-DC power conversion system configured to supply power to the one or more TECs for a high efficiency mode of operation and a high heat pumping mode of operation. The AC-DC power conversion system comprises a first AC-DC power converter configured to convert an AC input to a DC output at a first output power level for the high efficiency mode of operation of the one or more TECs. The AC-DC power conversion system further comprises a second AC-DC power converter configured to convert the AC input to a DC output at a second output power level for the high heat pumping mode of operation of the one or more TECs.

    摘要翻译: 系统和方法是盘在涉及到交流 - 直流(AC-DC)电力转换系统用于供应电力给一个或多个热电制冷器(TEC)游离缺失。 在一些实施例中,一种系统包括一个或多个TEC并且被配置为将电力提供给所述一个或多个的TECs操作的高效率模式和操作的高耐热泵送模式AC-DC电力变换系统的。 在AC-DC功率转换系统包括被配置为转换为AC输入为DC输出在针对所述一种或多种的TECs的操作高效率模式的第一输出功率电平的第一AC-DC转换器的功率。 在AC-DC功率转换系统还包括配置成将AC输入转换成DC输出在针对所述一种或多种的TECs的操作的高耐热泵送模式的第二输出功率电平的第二AC-DC转换器的功率。

    MECHANISM FOR MITIGATING HIGH HEAT-FLUX CONDITIONS IN A THERMOSIPHON EVAPORATOR OR CONDENSER
    6.
    发明公开
    MECHANISM FOR MITIGATING HIGH HEAT-FLUX CONDITIONS IN A THERMOSIPHON EVAPORATOR OR CONDENSER 审中-公开
    机制弱化高热流IN A THERMOSIPHONVERDAMPFER或冷凝器条件的

    公开(公告)号:EP3099986A1

    公开(公告)日:2016-12-07

    申请号:EP15704166.6

    申请日:2015-01-28

    摘要: The present disclosure relates to systems, devices, and methods that augment a thermosiphon system (10) with a thermally conductive matrix material to increase the surface area to volume ratio for heat conduction at a predetermined region(s) of the thermosiphon system while minimizing capillary forces that are isolated to those region(s). The thermosiphon system has tubing including a condenser region (22), an evaporator region (24), and an adiabatic region (26) (e.g., a region between the condenser and evaporator regions). The tubing can contain a heat transport medium and can provide passive two-phase transport of the heat transport medium between the condenser and evaporator regions according to thermosiphon principles. The system also includes a thermally conductive matrix material contained in the condenser region and/or the evaporator region but not in the adiabatic region, such that the thermally conductive matrix material increases a surface area for heat transfer in the condenser region and/or the evaporator region.

    摘要翻译: 本发明涉及系统,装置和方法做了增强热虹吸系统(10)配有一个热传导基体材料以增加表面面积与体积之比为热传导的热虹吸系统的预定区域(S),同时最小化毛细管 力确实被隔离到那些区域(一个或多个)。 热虹吸管系统具有蒸发器区域(24)的冷凝器管道包括区域(22)中,在绝热区域(26)(E. G.,冷凝器和蒸发器区域之间的区域)。 该管可含有传热介质,并可以提供gemäß进行热虹吸原理的冷凝器和蒸发器区域之间的热传送介质的被动双相传输。 因此,该系统包括:包含在所述冷凝器区域和/或所述蒸发器区域而不是在绝热区域中的热传导基体材料,谋求DASS死热传导基体材料增加了在冷凝器区域和/或所述蒸发器的传热的表面积 区域。

    THERMOELECTRIC HEAT EXCHANGER COMPONENT INCLUDING PROTECTIVE HEAT SPREADING LID AND OPTIMAL THERMAL INTERFACE RESISTANCE
    7.
    发明公开
    THERMOELECTRIC HEAT EXCHANGER COMPONENT INCLUDING PROTECTIVE HEAT SPREADING LID AND OPTIMAL THERMAL INTERFACE RESISTANCE 审中-公开
    热成像仪WÄRMETAUSCHERKOMPONENTEMITWÄRMEVERTEILUNGSSCHUTZKLAPPEUND OPTIMALEM THERMISCHEMGRENZFLÄCHENWIDERSTAND

    公开(公告)号:EP2848101A2

    公开(公告)日:2015-03-18

    申请号:EP13724983.5

    申请日:2013-05-07

    IPC分类号: H05K1/02

    摘要: A thermoelectric heat exchanger component includes a circuit board and multiple thermoelectric devices attached to the circuit board. Heights of at least two of the thermoelectric devices are different due to, for example, tolerances in a manufacturing process for the thermoelectric devices. The thermoelectric heat exchanger component also includes a first heat spreading lid over a first surface of the thermoelectric devices and a second heat spreading lid over a second surface of the thermoelectric devices. A thermal interface material is present between each one of the thermoelectric devices and the first and second heat spreading lids. The first heat spreading lid and the second heat spreading lid are oriented such that the thickness of the thermal interface material, and thus a thermal interface resistance, is optimized for the thermoelectric devices.

    摘要翻译: 热电换热器部件包括电路板和附接到电路板的多个热电装置。 至少两个热电装置的高度由于例如热电装置的制造工艺中的公差而不同。 热电换热器部件还包括热电装置的第一表面上的第一散热盖和热电装置的第二表面上的第二散热盖。 每个热电器件和第一和第二散热盖之间都存在热界面材料。 第一散热盖和第二散热盖被定向成使得热界面材料的厚度以及因此的热界面电阻被优化用于热电装置。

    SYSTEMS AND METHODS RELATING TO A THERMOELECTRIC HEAT EXCHANGE SYSTEM
    8.
    发明公开
    SYSTEMS AND METHODS RELATING TO A THERMOELECTRIC HEAT EXCHANGE SYSTEM 有权
    系统维护FÜREIN热敏电阻WÄRMEAUSTAUSCHSYSTEM

    公开(公告)号:EP2847524A1

    公开(公告)日:2015-03-18

    申请号:EP13724982.7

    申请日:2013-05-07

    IPC分类号: F25B21/02

    摘要: Embodiments of the present disclosure relate to controlling multiple Thermoelectric Coolers (TECs) to maintain a set point temperature of a chamber. In one embodiment, a controller receives temperature data corresponding to a temperature of the chamber. Based on the temperature data, the controller selectively controls two or more subsets of the TECs to maintain the temperature of the chamber at a desired set point temperature. In this manner, the controller is enabled to control the TECs such that the TECs operate to efficiently maintain the temperature of the chamber at the set point temperature. In another embodiment, the controller selects one or more control schemes enabled by the controller based on temperature data and a desired performance profile. The controller then independently controls one or more subsets of the TECs according to the selected control scheme(s).

    摘要翻译: 本公开的实施例涉及控制多个热电冷却器(TEC)以保持室的设定点温度。 在一个实施例中,控制器接收对应于室的温度的温度数据。 基于温度数据,控制器选择性地控制TEC的两个或多个子集以将腔室的温度保持在期望的设定点温度。 以这种方式,控制器能够控制TEC,使得TEC操作以有效地将室的温度保持在设定点温度。 在另一个实施例中,控制器基于温度数据和期望的性能轮廓来选择由控制器启用的一个或多个控制方案。 然后,控制器根据所选择的控制方案独立地控制TEC的一个或多个子集。

    LOW RESISTIVITY CONTACT
    9.
    发明公开
    LOW RESISTIVITY CONTACT 审中-公开
    低阻抗接触

    公开(公告)号:EP2756529A2

    公开(公告)日:2014-07-23

    申请号:EP12767134.5

    申请日:2012-08-03

    IPC分类号: H01L35/10

    摘要: Embodiments of a low resistivity contact to a semiconductor structure are disclosed. In one embodiment, a semiconductor structure includes a semiconductor layer, a semiconductor contact layer having a low bandgap on a surface of the semiconductor layer, and an electrode on a surface of the semiconductor contact layer opposite the semiconductor layer. The bandgap of the semiconductor contact layer is in a range of and including 0 to 0.2 electron- volts (eV), more preferably in a range of and including 0 to 0.1 eV, even more preferably in a range of and including 0 to 0.05 eV. Preferably, the semiconductor layer is p-type. In one particular embodiment, the semiconductor contact layer and the electrode form an ohmic contact to the p-type semiconductor layer and, as a result of the low bandgap of the semiconductor contact layer, the ohmic contact has a resistivity that is less than 1 x10
    -6 ohms-cm
    2 .