Abstract:
Bimodal amorphous inorganic material that in a pore size distribution plot has distinct mesopore and micropore peaks. A process for producing a bimodal material or a material that contains essentially only mesopores involves heating an inorganic oxide in the presence of material that bonds to the inorganic oxide by hydrogen bonding.
Abstract:
A catalytic material includes microporous zeolites supported on a mesoporous inorganic oxide support. The microporous zeolite can include zeolite Beta, zeolite Y (including “ultra stable Y” - USY), mordenite, Zeolite L, ZSM.5, ZSM-11, ZSM-12, ZSM-20, Theta-1, ZSM-23, ZSM-34, ZSM-35, ZSM-48, SSZ-32, PSH-3, MCM-22, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-4, ITQ-21, SAPO-5, SAPO-11, SAPO-37, Breck-6, ALPO4-5, etc. The mesoporous inorganic oxide can be e.g., silica or silicate. The catalytic material can be further modified by introducing some metals e.g. aluminum, titanium, molybdenum, nickel, cobalt, iron, tungsten, palladium and platinum. It can be used as catalysts for acylation, alkylation, dimerization, oligomerization, polymerization, hydrogenation, dehydrogenation, aromatization, isomerization, hydrotreating, catalytic cracking and hydrocracking reactions.
Abstract:
A material especially useful for the selective oxidation of hydrocarbons and-other organic compounds includes a non-crystalline, porous inorganic oxide having at least 97 volume percent mesopores based on micropores and mesopores, and at least one catalytically active metal selected from the group consisting of one or more transition metal and one or more noble metal.
Abstract:
An integrated process combines olefin epoxidation with production of cyclohexanone and cyclohexanol for nylon. Cyclohexanone and cyclohexanol normally produced by the oxidation of cyclohexane, in which cyclohexyl hydroperoxide is generated and is removed or decomposed down stream. However, this invention utilizes the intermediate of cyclohexyl hydroperoxide as an oxidant for the olefin epoxidation and meanwhile generates a valuable product.
Abstract:
Bimodal inorganic material that in a pore size distribution plot has distinct mesopore and micropore peaks. A process for producing a bimodal material or a material that contains essentially only mesopores involves heating an inorganic oxide in the presence of material that bonds to the inorganic oxide by hydrogen bonding. The micropores may or may not include a crystalline structure.