Abstract:
A dilation catheter includes a shaft and an expandable element. The shaft includes a proximal portion and a distal portion. The distal portion includes a tip and a bend. The tip is sized and configured to pass through an isthmus of a Eustachian tube (ET). The bend is proximal to the tip. The bend is formed at an angle configured to provide insertion of the tip into the isthmus of the ET via an ear canal associated with the ET. The expandable element is disposed at the distal portion of the shaft. The expandable element is configured to transition between a non-expanded state and an expanded state. The expandable element in the non-expanded state is configured for insertion into the ET via the isthmus. The expandable element in the expanded state is configured to dilate the ET.
Abstract:
An apparatus comprises a shaft, an expandable dilator (1850), and at least one ventilation pathway (1855). The shaft defines a longitudinal axis and comprises a distal and proximal ends with at least one shaft lumen (1853). The expandable dilator comprises body with its own proximal and distal ends (1856, 1851). The body is configured to transition between a contracted state and an expanded state. The body is configured to dilate a Eustachian tube of a patient in the expanded state. The at least one ventilation pathway is configured to provide ventilation from the distal end of the body to the proximal end of the body when the body is in the expanded state. In some examples, the ventilation pathway comprises a set of transversely oriented vent openings formed through the shaft. In some other examples, the ventilation pathway comprises a space defined between one or more radially outwardly protruding features of the expandable dilator.
Abstract:
A dilation catheter comprises a handle, a guidewire, a dilation catheter, a guidewire movement mechanism, and dilation catheter movement actuator. The guidewire movement mechanism is configured to translate to thereby cause translation of the guidewire relative to the handle. The dilation catheter movement mechanism is configured to translate to thereby cause translation of the dilation catheter relative to the handle. The guidewire movement mechanism also includes a rotation mechanism configured to impart rotation upon the guidewire. The rotation mechanism may include features configured to limit the amount that the guidewire may rotate. The rotation mechanism may also include features configured to convert linear movement of an actuator into rotational movement of the guidewire. The dilation catheter may include features configured to provide for side entry of the guidewire into the dilation catheter.
Abstract:
A system for dilating a Eustachian tube (ET) of a patient includes a guide member and a dilation catheter. The guide member includes a bent distal portion that is configured to provide access to an opening in the ET. The dilation catheter is slidable relative to the guide member. The dilation catheter includes a shaft, an expandable element, and an actuator. The expandable element is disposed at the distal portion of the shaft. The actuator includes a grasping portion and an actuating member. The expandable element is configured to transition to an expanded configuration in response to actuation of the actuating member. The grasping portion and actuating member are configured to be grasped in a single hand of an operator to enable the operator to advance the dilation catheter relative to the guide member and to transition the expandable element between expanded and unexpanded configurations with the single hand.
Abstract:
A dilation catheter system comprises a guide member, a dilation catheter, and an image sensor. The guide member includes a shaft comprising a distal end and a proximal end. The shaft further defines a longitudinal axis. The dilation catheter is movable relative to the guide catheter member and comprises an expandable dilator. The expandable dilator is sized to fit within one or both of a Eustachian tube or a passageway associated with a paranasal sinus. The image sensor is configured to provide visualization within anatomy of a patient. The image sensor is integral with the guide member.
Abstract:
A system for delivering a fluid to a Eustachian tube (ET) of a patient includes a guide member and a tubular member. The guide member includes a shaft having a proximal portion, a distal portion, and a bend at the distal portion. The bend is configured to provide access to an opening in the ET. The system further includes a tubular member comprising a proximal end, a distal end, and a lumen extending therebetween. The tubular member is sized to fit within the ET. One or both of the tubular member and the guide member comprises a first stop member configured to engage the other of the tubular member or the guide member. The first stop member is configured to restrict a distal advancement of the tubular member relative to the guide member.
Abstract:
A dilation catheter system comprises a guide member, a dilation catheter, and an image sensor. The guide member includes a shaft comprising a distal end and a proximal end. The shaft further defines a longitudinal axis. The dilation catheter is movable relative to the guide catheter member and comprises an expandable dilator. The expandable dilator is sized to fit within one or both of a Eustachian tube or a passageway associated with a paranasal sinus. The image sensor is configured to provide visualization within anatomy of a patient. The image sensor is integral with the guide member.
Abstract:
A spacer for delivery into the natural or man-made openings to the frontal, maxillary, sphenoid, anterior or posterior ethmoid sinuses, or other cells or cavities, anatomical regions such as nostrils, nasal cavities, nasal meatus, and other passageways such as the Eustachian tubes, naso-lachrymal ducts or airway is described. The bioabsorbable polymeric spacers maintain the opening and/or are useful for delivering drugs or other substances to the natural or man-made openings.