摘要:
The present invention relates to a droplet microactuator and to systems, apparatuses and methods employing the droplet microactuator for executing various protocols using droplets. The invention includes a droplet microactuator or droplet microactuator system having one or more input reservoirs loaded with reagents for conducting sequencing protocols, such as the reagents for conducting a pyrosequencing protocol. The invention also includes a droplet microactuator or droplet microactuator system, having one or more input reservoirs loaded with a sample for conducting a pyrosequencing protocol.
摘要:
The present invention relates to a droplet microactuator and to systems, apparatuses and methods employing the droplet microactuator for executing various protocols using discrete droplets. The invention includes a droplet microactuator or droplet microactuator system having one or more input reservoirs loaded with reagents for conducting biochemical reactions, such as the reagents described for use in nucleic acid amplification protocols, affinity-based assay protocols, sequencing protocols, and protocols for analyses of biological fluids.
摘要:
The present invention relates to a droplet microactuator and to systems, apparatuses and methods employing the droplet microactuator for executing various protocols using discrete droplets. The invention includes a droplet microactuator or droplet microactuator system having one or more input reservoirs loaded with reagents for conducting biochemical reactions, such as the reagents described for use in nucleic acid amplification protocols, affinity-based assay protocols, sequencing protocols, and protocols for analyses of biological fluids.
摘要:
The present invention relates to a droplet microactuator and to systems, apparatuses and methods employing the droplet microactuator for executing various protocols using droplets. The invention includes a droplet microactuator or droplet microactuator system having one or more input reservoirs loaded with reagents for conducting sequencing protocols, such as the reagents for conducting a pyrosequencing protocol. The invention also includes a droplet microactuator or droplet microactuator system, having one or more input reservoirs loaded with a sample for conducting a pyrosequencing protocol.
摘要:
The invention provides a droplet actuator designed for performing electroporation on cells in droplets. The invention also provides method and systems for performing electroporation on cells in droplets on a droplet actuator.
摘要:
Approaches to configuring and wiring electrodes in a droplet actuator are provided. Droplet actuators employing the designs of the invention are useful for conducting a variety of droplet operations. In one set of embodiments, the droplet actuator of the invention includes various single-layer wiring configurations for mitigating the constraints and drawbacks that are associated with single-layer designs, such as wireability constraints, limited mechanisms for performing droplet operations, electrostatic interference from wires, and any combinations thereof. In another set of embodiments, the droplet actuator of the invention includes a reference electrode that is situated on one substrate that is separated by a gap from a second substrate and one or more control electrodes that are situated on the second substrate. The control electrodes may be placed such that the second substrate is interposed between the control electrodes and the first substrate.
摘要:
The invention provides pyrosequencing-based methods of analyzing and synthesizing DNA, including methods of DNA error correction, determining DNA size distribution, screening for nucleotide repeat disorders such as fragile X syndrome, determining size distribution and bias in a DNA library, and determining pyrosequencing read length. The methods include on-bench protocols as well as droplet-based protocols that may be conducted on a droplet actuator.
摘要:
A method of preparing a nucleic acid library in droplets in contact with oil, including: (a) blunt-ending nucleic acid fragments in a droplet in the oil to yield blunt-ended nucleic acid fragments; (b) phosphorylating the blunt-ended nucleic acid fragments in a droplet in the oil to yield phosphorylated nucleic acid fragments; coupling A-tails to the phosphorylated nucleic acid fragments in a droplet in the oil to yield A-tailed nucleic acid fragments; and (d) coupling nucleic acid adapters to the A-tailed nucleic acid fragments in a droplet in the oil to yield the nucleic acid library comprising adapter-ligated nucleic acid fragments.