摘要:
A circuit for energizing a magnetic flux coupling apparatus has a pick-up coil for receiving power inductively, a storage capacitor for storing energy from the received power, and an inverter for supplying electrical energy from the storage capacitor to the magnetic flux coupling apparatus. The circuit allows power transfer to a load to be supplied by the flux coupling apparatus to exceed the power received from the pick-up.
摘要:
An inductive power transfer (IPT) control method is disclosed for controlling the output of an IPT pick-up. The invention involves selectively shunting first and second diodes of a diode bridge to selectively rectify an AC current input for supply to a load, or recirculate the AC current to a resonant circuit coupled to the input of the controller. By controlling the proportion of each positive-negative cycle of the AC input which is rectified/recirculated, the output is regulated. Also disclosed is an IPT controller adapted to perform the method, an IPT pick-up incorporating the IPT controller, and an IPT system incorporating at least one such IPT pick-up.
摘要:
An Inductively Coupled Power Transfer (ICPT, or IPT) pick-up circuit is provided which includes an inductive element L2 provided between a resonant circuit and a rectifier means. A DC inductor is not required. The inductive element L2 is chosen to have substantially the same inductance as that of the pick-up coil L1, reducing or eliminating the reactive component of the reflected impedance.
摘要:
An Inductive Power Transfer (IPT) pick-up apparatus includes a magnetically permeable core, a first coil, being wound about the core so as to be inductive coupled therewith such that a current induced in the first coil is most sensitive to a first directional component of magnetic flux and a second coil, being wound about the core so as to be inductively coupled therewith such that a current induced in the second coil is most sensitive to a second directional component of magnetic flux. The first directional component is substantially orthogonal to the second directional component.
摘要:
PCT No. PCT/NZ97/00053 Sec. 371 Date Nov. 3, 1998 Sec. 102(e) Date Nov. 3, 1998 PCT Filed May 2, 1997 PCT Pub. No. WO97/42695 PCT Pub. Date Nov. 13, 1997Loosely coupled inductive power for charging batteries is rectified from a first power pickup winding and the resulting current source is connected to a battery unit. Each current source is controlled by shorting a second resonant winding. Battery banks may be charged using multiple isolated position-tolerant pickups independently controlled according to the condition of the connected battery unit and by overall commands communicated over an isolated link. The battery unit may be a single cell. In a self-stabilizing bank or monoblock a primary inductive conductor is energized using all the cells, individual cells are separately monitored by control means and any below-average cell can be individually charged from the inductive conductor, thus correcting between-cell variations. The charge in all cells within a bank can be held within 30% to 70% of full charge and prevented from drifting towards full or empty during repetitive charge and discharge times.
摘要:
The present invention provides a system for controlling one or more operating unites in an inductive power transfer (IPT) system. Each operating unit includes a pick-up coil that takes power from a primary conductor or track over an air gap. The operating unit is controlled by frequency modulating the primary conductor power supply to send a control instruction which is decoded by the operating unit. The instruction is decoded by generating a signal using a local oscillator in the operating unit and using the signal to detect changes in the frequency of the current in the primary conductor. Such a system can be used, for example, to control inductively powered road-studs that include a light source for controlling traffic on a roadway. A narrow band modulated data transmission system and method for controlling an operating unit are also provided.
摘要:
This invention relates to current-fed resonant inverters for electrical power applications to change direct current (DC) into alternating current (AC). One application of the invention is to power supplies for inductive power transfer (IPT) systems. There is provided a resonant inverter including an input for supply of current from a DC power source, a resonant circuit including two coupled inductive elements and a tuning capacitance, the inductive elements being arranged to split current from the power source; a first switching means comprising two switching devices operable in substantially opposite phase to alternately switch current from the power source into the inductive elements; and a second switching means to selectively switch one or more control capacitances into or out of the resonant circuit dependent on a power factor of the resonant circuit.
摘要:
This disclosure provides methods and apparatus for use in wireless power transfer and particularly wireless power transfer to remote system such as electric vehicles. In one aspect a wireless power transfer system comprises a wireless power transfer device comprising a first connector portion; an electrical device comprising a second connector portion; and a wiring harness comprising a cable, a first end connector portion at one end of the cable configured to be removably connected to the first connector portion, and a second end connector portion at the other end of the second connector portion. In another aspect the the cable configured to be removably connected to wiring harness comprises a plurality of cables, each comprising a plurality of conductive filaments; and a connector portion comprising a plurality of pins each comprising a recessed end, wherein an end of each cable is soldered into the respective recessed ends.