Abstract:
There is produced a fine silver particle dispersing solution which contains: fine silver particles (the content of silver in the fine silver particle dispersing solution is 30 to 90 % by weight), which have an average primary particle diameter of 1 to 100 nm and which are coated with an amine having a carbon number of 8 to 12, such as octylamine, serving as an organic protective material; a polar solvent (5 to 70 % by weight) having a boiling point of 150 to 300 °C; and an acrylic dispersing agent (1.5 to 5 % by weight with respect to the fine silver particles), such as a dispersing agent of at least one of acrylic acid ester and methacrylic acid ester.
Abstract:
A bonding material using silver nanoparticles considerably changes in coating-material property in response to a slight change in composition, and the stability thereof has been insufficient for large-amount application. A bonding material which uses silver nanoparticles, meets the requirements for mass printing, attains dimensional stability, and gives a smooth printed surface is provided. The bonding material includes silver nanoparticles which have at least an average primary particle diameter of 1 nm to 200 nm and have been coated with an organic substance having 8 or less carbon atoms, a dispersion medium, and a viscosity modifier composed of an organic substance, and has a viscosity (measured at a shear rate of 15.7 [1/s]) of 100 Pa·s or lower and a thixotropic ratio (measured at a shear rate of 3.1 [1/s]/measured at a shear rate of 15.7 [1/s]) of 4 or lower.
Abstract:
A bonding material of a silver paste contains: fine silver particles having an average primary particle diameter of 1 to 200 nm, each of the fine silver particles being coated with an organic compound having a carbon number of not greater than 8, such as sorbic acid; and a solvent mixed with the fine silver particles, wherein a diol, such as an octanediol, is used as the solvent and wherein a triol having a boiling point of 200 to 300 °C, a viscosity of 2,000 to 10,000 mPa at 20°C and at least one methyl group, such as 2-methylbutane-2,3,4-triol or 2-methylbutane-1,2,4-triol, is mixed with the solvent as an addition agent.
Abstract:
When a substrate having a low heat resistance is used, heat treatment at approximately 120°C at which deformation does not occur is desirable. When a low resistance is achieved regardless of the type of resin used for a conductive paste, a flexible design of a paste is possible according to purposes, and fields to which the paste could be applied are expanded. Thus, a conductive paste capable of forming a conductive film exhibiting a high conductivity even at low temperatures of approximately 120°C regardless of whether the constituting resin is a thermosetting resin or a thermoplastic resin is provided. In a method for forming a conductive film, a conductive paste in which a dicarboxylic acid having 2 to 8 carbon atoms is added to a paste including silver nanoparticles coated with an organic substance having 2 to 6 carbon atoms, a dispersion medium, and a resin is used as a paste for formation of a wiring.
Abstract:
There is provided a metal nanoparticle dispersion which can be bonded at a lower temperature (for example, 200°C or less), and enabling to obtain excellent mechanical properties and electric properties of the bonded portion, the metal nanoparticle dispersion, including: metal nanoparticles, with at least a part of a surface of each particle coated with amine A having 8 or more carbon atoms; and a dispersion medium for dispersing the metal nanoparticles, wherein the dispersion medium contains amine B which is primary, secondary, or tertiary amine having 7 or less carbon atoms, and which is linear alkyl amine or alkanol amine.