Abstract:
A bonding material of a silver paste contains: fine silver particles having an average primary particle diameter of 1 to 200 nm, each of the fine silver particles being coated with an organic compound having a carbon number of not greater than 8, such as sorbic acid; and a solvent mixed with the fine silver particles, wherein a diol, such as an octanediol, is used as the solvent and wherein a triol having a boiling point of 200 to 300 °C, a viscosity of 2,000 to 10,000 mPa at 20°C and at least one methyl group, such as 2-methylbutane-2,3,4-triol or 2-methylbutane-1,2,4-triol, is mixed with the solvent as an addition agent.
Abstract:
There is provided a bonding material capable of forming a bonding body under an inert gas atmosphere such as a nitrogen atmosphere, and capable of exhibiting a bonding strength that endures a practical use even if not a heat treatment is applied thereto at a high temperature, which is the bonding material containing silver nanoparticles coated with a fatty acid having a carbon number of 8 or less and having an average primary particle size of 1nm or more and 200nm or less, and silver particles having an average particle size of 0.5µm or more and 10µm or less, and an organic material having two or more carboxyl groups.
Abstract:
The occurrence of uneven drying in the center and end of a surface of a bonding layer during a desolvation process of a pre-drying step is reduced to ensure highly reliable bonding without peeling of a bonding surface even after repeated exposure to heat shock after bonding. The bonding material of the present invention to achieve the object contains silver nanoparticles coated with organic substance having 6 or less carbon atoms and having an average primary particle diameter of 10 to 30 nm as main silver particles, silver nanoparticles coated with an organic substance having 6 or less carbon atoms and having an average primary particle diameter of 100 to 200 nm as secondary silver particles, two kinds of solvents having different boiling points, and a dispersant.
Abstract:
[Problem] To provide a joining silver sheet that is capable of providing a high joining strength with a low pressure of 3 MPa or lower. [Means for Resolution] A joining silver sheet containing silver particles having a particle diameter of from 1 to 250 nm integrated by sintering, and having a capability of further undergoing sintering on heating and retaining the silver sheet at a temperature range of from T A to T B (°C) satisfying 270 ‰¤ T A
Abstract:
A bonding material of a silver paste includes: fine silver particles having an average primary particle diameter of 1 to 50 nanometers, each of the fine silver particles being coated with an organic compound having a carbon number of not greater than 8, such as hexanoic acid; silver particles having an average primary particle diameter of 0.5 to 4 micrometers, each of the silver particles being coated with an organic compound, such as oleic acid; a solvent containing 3 to 7 % by weight of an alcohol and 0.3 to 1% by weight of a triol; a dispersant containing 0.5 to 2 % by weight of an acid dispersant and 0.01 to 0.1 % by weight of phosphate ester dispersant; and 0.01 to 0.1% by weight of a sintering aid, such as diglycolic acid, wherein the content of the fine silver particles is in the range of from 5% by weight to 30% by weight, and the content of the silver particles is in the range of from 60 % by weight to 90% by weight, the content of the total of the fine silver particles and the silver particles being not less than 90 % by weight.
Abstract:
There is provided a metal nanoparticle dispersion which can be bonded at a lower temperature (for example, 200°C or less), and enabling to obtain excellent mechanical properties and electric properties of the bonded portion, the metal nanoparticle dispersion, including: metal nanoparticles, with at least a part of a surface of each particle coated with amine A having 8 or more carbon atoms; and a dispersion medium for dispersing the metal nanoparticles, wherein the dispersion medium contains amine B which is primary, secondary, or tertiary amine having 7 or less carbon atoms, and which is linear alkyl amine or alkanol amine.
Abstract:
There is provided an inexpensive bonding material, which can be easily printed on articles to be bonded to each other and which can suppress the generation of voids in the bonded portions of the articles to be bonded to each other, and a bonding method using the same. In a bonding material of a copper paste which contains a copper powder containing 0.3 % by weight or less of carbon and having an average particle diameter of 0.1 to 1 µ m, and an alcohol solvent, such as a monoalcohol, a diol, a triol or a terpene alcohol, the content of the copper powder is in the range of from 80 % by weight to 95 % by weight, and the content of the alcohol solvent is in the range of from 5 % by weight to 20 % by weight.
Abstract:
A bonding material includes: fine silver particles having an average primary particle diameter of 1 to 50 nm, each of the fine silver particles being coated with an organic compound having a carbon number of not greater than 8, such as hexanoic acid; silver particles having an average primary particle diameter of 0.5 to 4 µ m, each of the silver particles being coated with an organic compound, such as oleic acid; a solvent containing a primary alcohol solvent and a terpene alcohol solvent; and a dispersant containing a phosphoric acid ester dispersant (or a phosphoric acid ester dispersant and an acrylic resin dispersant), wherein the content of the fine silver particles is in the range of from 5 wt% to 30 wt%, and the content of the silver particles is in the range of from 60 wt% to 90 wt%, the total content of the fine silver particles and the silver particles being not less than 90 wt%, and wherein the bonding material further includes a sintering aid of a monocarboxylic acid having an ether bond.
Abstract:
A bonding material using silver nanoparticles considerably changes in coating-material property in response to a slight change in composition, and the stability thereof has been insufficient for large-amount application. A bonding material which uses silver nanoparticles, meets the requirements for mass printing, attains dimensional stability, and gives a smooth printed surface is provided. The bonding material includes silver nanoparticles which have at least an average primary particle diameter of 1 nm to 200 nm and have been coated with an organic substance having 8 or less carbon atoms, a dispersion medium, and a viscosity modifier composed of an organic substance, and has a viscosity (measured at a shear rate of 15.7 [1/s]) of 100 Pa·s or lower and a thixotropic ratio (measured at a shear rate of 3.1 [1/s]/measured at a shear rate of 15.7 [1/s]) of 4 or lower.