METHODS AND ORGANISMS FOR THE GROWTH-COUPLED PRODUCTION OF 1,4-BUTANEDIOL
    3.
    发明授权
    METHODS AND ORGANISMS FOR THE GROWTH-COUPLED PRODUCTION OF 1,4-BUTANEDIOL 有权
    方法和事业单位的1,4-丁二醇生长偶联型生产

    公开(公告)号:EP2185708B1

    公开(公告)日:2016-05-04

    申请号:EP08782639.2

    申请日:2008-08-06

    申请人: Genomatica, Inc.

    IPC分类号: C12N15/52 C12P7/18 C12N1/00

    CPC分类号: C12P7/18 B01D3/002 C12N9/0006

    摘要: The invention provides a non-naturally occurring microorganism comprising one or more gene disruptions, the one or more gene disruptions occurring in genes encoding an enzyme obligatory to coupling 1,4-butanediol production to growth of the microorganism when the gene disruption reduces an activity of the enzyme, whereby theone or more gene disruptions confers stable growth-coupled production of 1,4-butanediol onto the non-naturally occurring microorganism. The microorganism can further comprise a gene encoding an enzyme in a 1,4-butanediol (BDO) biosynthetic pathway. The invention additionally relates to methods of using microorganisms to produce BDO.

    COMPOSITIONS AND METHODS FOR THE BIOSYNTHESIS OF 1,4-BUTANEDIOL AND ITS PRECURSORS
    4.
    发明授权
    COMPOSITIONS AND METHODS FOR THE BIOSYNTHESIS OF 1,4-BUTANEDIOL AND ITS PRECURSORS 有权
    组合物和生物合成1,4-丁二醇及其前体的方法

    公开(公告)号:EP2137315B1

    公开(公告)日:2014-09-03

    申请号:EP08732315.0

    申请日:2008-03-14

    申请人: Genomatica, Inc.

    IPC分类号: C12P7/18

    摘要: The invention provides a non-naturally occurring microbial biocatalyst including a microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway having at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, or ±-ketoglutarate decarboxylase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce monomeric 4-hydroxybutanoic acid (4-HB). Also provided is a non-naturally occurring microbial biocatalyst including a microbial organism having 4-hydroxybutanoic acid (4-HB) and 1,4-butanediol (BDO) biosynthetic pathways, the pathways include at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate:CoA transferase, 4-butyrate kinase, phosphotransbutyrylase, ±-ketoglutarate decarboxylase, aldehyde dehydrogenase, alcohol dehydrogenase or an aldehyde/alcohol dehydrogenase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce 1,4-butanediol (BDO). Additionally provided is a method for the production of 4-HB. The method includes culturing a non-naturally occurring microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway including at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase or ±-ketoglutarate decarboxylase under substantially anaerobic conditions for a sufficient period of time to produce monomeric 4-hydroxybutanoic acid (4-HB). Further provided is a method for the production of BDO. The method includes culturing a non-naturally occurring microbial biocatalyst, comprising a microbial organism having 4-hydroxybutanoic acid (4-HB) and 1,4-butanediol (BDO) biosynthetic pathways, the pathways including at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate:CoA transferase, 4-hydroxybutyrate kinase, phosphotranshydroxybutyrylase, ±-ketoglutarate decarboxylase, aldehyde dehydrogenase, alcohol dehydrogenase or an aldehyde/alcohol dehydrogenase for a sufficient period of time to produce 1,4-butanediol (BDO). The 4-HB and/or BDO products can be secreted into the culture medium.

    MICROORGANISMS AND METHODS FOR PRODUCING 2,4-PENTADIENOATE, BUTADIENE, PROPYLENE, 1,3-BUTANEDIOL AND RELATED ALCOHOLS
    8.
    发明公开
    MICROORGANISMS AND METHODS FOR PRODUCING 2,4-PENTADIENOATE, BUTADIENE, PROPYLENE, 1,3-BUTANEDIOL AND RELATED ALCOHOLS 审中-公开
    微生物AND METHOD FOR PRODUCING 2,4-戊二烯酸,丁二烯,丙烯,1,3-丁二醇和相关醇

    公开(公告)号:EP2744906A1

    公开(公告)日:2014-06-25

    申请号:EP12826412.4

    申请日:2012-08-17

    申请人: Genomatica, Inc.

    IPC分类号: C12P7/18

    摘要: The invention provides non-naturally occurring microbial organisms containing 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol pathways comprising at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol. The invention additionally provides methods of using such microbial organisms to produce 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol, by culturing a non- naturally occurring microbial organism containing 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-l-ol pathways as described herein under conditions and for a sufficient period of time to produce 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol.

    COMPOSITIONS AND METHODS FOR THE BIOSYNTHESIS OF 1,4-BUTANEDIOL AND ITS PRECURSORS
    10.
    发明公开
    COMPOSITIONS AND METHODS FOR THE BIOSYNTHESIS OF 1,4-BUTANEDIOL AND ITS PRECURSORS 有权
    组合物和生物合成1,4-丁二醇及其前体的方法

    公开(公告)号:EP2137315A2

    公开(公告)日:2009-12-30

    申请号:EP08732315.0

    申请日:2008-03-14

    申请人: Genomatica, Inc.

    IPC分类号: C12P1/00

    摘要: The invention provides a non-naturally occurring microbial biocatalyst including a microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway having at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, or ±-ketoglutarate decarboxylase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce monomeric 4-hydroxybutanoic acid (4-HB). Also provided is a non-naturally occurring microbial biocatalyst including a microbial organism having 4-hydroxybutanoic acid (4-HB) and 1,4-butanediol (BDO) biosynthetic pathways, the pathways include at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate:CoA transferase, 4-butyrate kinase, phosphotransbutyrylase, ±-ketoglutarate decarboxylase, aldehyde dehydrogenase, alcohol dehydrogenase or an aldehyde/alcohol dehydrogenase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce 1,4-butanediol (BDO). Additionally provided is a method for the production of 4-HB. The method includes culturing a non-naturally occurring microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway including at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase or ±-ketoglutarate decarboxylase under substantially anaerobic conditions for a sufficient period of time to produce monomeric 4-hydroxybutanoic acid (4-HB). Further provided is a method for the production of BDO. The method includes culturing a non-naturally occurring microbial biocatalyst, comprising a microbial organism having 4-hydroxybutanoic acid (4-HB) and 1,4-butanediol (BDO) biosynthetic pathways, the pathways including at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate:CoA transferase, 4-hydroxybutyrate kinase, phosphotranshydroxybutyrylase, ±-ketoglutarate decarboxylase, aldehyde dehydrogenase, alcohol dehydrogenase or an aldehyde/alcohol dehydrogenase for a sufficient period of time to produce 1,4-butanediol (BDO). The 4-HB and/or BDO products can be secreted into the culture medium.