摘要:
A method of making a heat treated (HT) substantially transparent coated article to be used in shower door applications, window applications, tabletop applications, or any other suitable applications. For example, certain embodiments relate to a method of making a coated article including a step of heat treating a glass substrate coated with at least layer of or including carbon (e.g., diamond-like carbon (DLC)) and an overlying protective film thereon. The protective film may be of or include both (a) an oxygen blocking or barrier layer, and (b) a release layer, with the release layer being located between at least the carbon based layer and the oxygen blocking layer. The release layer is of or includes zinc oxynitride (e.g., ZnO x N z ). Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be entirely or partially removed. Other embodiments of this invention relate to the pre-HT coated article, or the post-HT coated article.
摘要:
A coated article is provided that may be heat treated in certain example embodiments. A grader layer (e.g., contact layer or other suitable layer) is formed by initially sputter-depositing a layer, and thereafter ion beam treating the sputter-deposited layer with at least reactive gas ions in order to form a graded layer. In certain example embodiments, the result is a coated article that has improved visible transmission and/or durability, without sacrificing optional heat treatability.
摘要:
Certain example embodiments of this invention relate to methods for large area graphene precipitation onto glass, and associated articles/devices. For example, a coated article including a graphene-inclusive film on a substrate, and/or a method of making the same, is provided. A metal-inclusive catalyst layer (e.g., of or including Ni and/or the like) is disposed on the substrate. The substrate with the catalyst layer thereon is exposed to a precursor gas and a strain-inducing gas at a temperature of no more than 900 degrees C. Graphene is formed and/or allowed to form both over and contacting the catalyst layer, and between the substrate and the catalyst layer, in making the coated article. The catalyst layer, together with graphene formed thereon, is removed, e.g., through excessive strain introduced into the catalyst layer as associated with the graphene formation. Products including such articles, and/or methods of making the same, also are contemplated herein.
摘要:
In certain example embodiments, light emitting diodes (LEDs) may be disposed on a deformable and flexible backbone sheet and chained together in an array, e.g., via flexible wiggle wires. Such flexible wiggle wires may also provide an electrical connection to an external power source. An optical out-coupling layer stack (OCLS) system may help serve as an index matching layer, heat sink, étendue conserver, etc. The backbone may be formed to a shape tailored to its ultimate application. Applications may include, for example, automotive (such as Center High Mounted Stop Lamp (CHMSL) applications), lighting, signage, and/or other applications. In an example CHMSL application, the deformable sheet with the LED array thereon has a step, sinusoidal, or other shape matched to the angle and/or curvature of the glass such that the LEDs produce light primarily in a direction parallel to a surface on which a vehicle is located.
摘要:
A method and apparatus for low temperature laser sealing of bonded articles is disclosed. Hermetic sealing of glass substrates using low temperature sealing techniques that do not adversely affect bulk strength of glass substrates, the environment created between the substrates and/or any components housed within the sealed glass substrates is disclosed. Such low temperature sealing techniques include use of localized laser heating of sealing materials to form a hermetic seal between glass substrates that does not involve heating the entire article to be sealed.
摘要:
A method of removing condensation from a refrigerator/freezer door including at least one glass substrate (4502, 4504), the door being connected to a heating system operable in at least first and second modes, the method comprising: when the heating system is operating in the first mode (S4410), heating the door while condensation is detected as being present thereon, as determined via a moisture detector (4508); and when the heating system is operating in the second mode (S4416): heating the door when the door is determined to be open, and continuing to heat the door, until either the door is determined to be closed, or a thermal runaway (S4420) is detected, whichever comes first.
摘要:
Certain example embodiments of this invention relate to large-area transparent conductive coatings (TCCs) including carbon nanotubes (CNTs) and nanowire composites, and methods of making the same. The sigmadc/sigmaopt ratio of such thin films may be improved via stable chemical doping and/or alloying of CNT-based films. The doping and/or alloying may be implemented in a large area coating system, e.g., on glass and/or other substrates. In certain example embodiments, a CNT film may be deposited and then doped via chemical functionalization and/or alloyed with silver and/or palladium. Both p-type and n-type dopants may be used in different embodiments of this invention. In certain example embodiments, silver and/or other nanowires may be provided, e.g., to further decrease sheet resistance. Certain example embodiments may provide coatings that approach, meet, or exceed 90% visible transmission and 90 ohms/square target metrics.
摘要:
Certain example embodiments of this invention relate to electrochromic (EC) devices, assemblies incorporating electrochromic devices, and/or methods of making the same. More particularly, certain example embodiments of this invention relate to improved EC materials, EC device stacks, high-volume manufacturing (HVM) compatible process integration schemes, and electrochromic window assemblies (600a) comprising a first glass substrate (402), which is not thermally tempered and supports a stack (400) of electrochromic layers, a second glass substrate (602), made of thermally tempered glass and laminated to the first substrate, and a third glass substrate (604).
摘要:
Certain example embodiments of this invention relate to the use of graphene as a transparent conductive coating (TCC). In certain example embodiments, graphene thin films grown on large areas hetero-epitaxially, e.g., on a catalyst thin film, from a hydrocarbon gas (such as, for example, C2H2, CH4, or the like). The graphene thin films of certain example embodiments may be doped or undoped. In certain example embodiments, graphene thin films, once formed, may be lifted off of their carrier substrates and transferred to receiving substrates, e.g., for inclusion in an intermediate or final product. Graphene grown, lifted, and transferred in this way may exhibit low sheet resistances (e.g., less than 150 ohms/square and lower when doped) and high transmission values (e.g., at least in the visible and infrared spectra).