摘要:
Apparatus and method for controlling an operation of a test pin of a per-pin semiconductor device test system [10]. The apparatus includes pattern storage memory [42] for storing and for outputting information related to a state of the test pin for individual ones of a plurality of consecutive test cycles, pattern processor [14] having an input coupled to the pattern storage memory for generating for each of the test cycles words comprised of M bits, and a test pin control memory [18] having an input coupled to the output of the pattern processor for decoding each of the words into 2 M or less command words. Each of the decoded command words includes a plurality of control bits. Predetermined ones of the plurality of control bits are coupled to pin driver electronics [24,28] for specifying, for each of the test cycles, at least one characteristic of an electrical signal transmitted to the test pin. The test system also includes test pin signal receiving circuitry [26] for coupling to the test pin for receiving an electrical signal therefrom. Other predetermined ones of the control bits are coupled to the receiving circuitry for specifying, for each of the test cycles, at least one operating characteristic associated with the receiving circuitry.
摘要:
Disclosed is a method and circuit for reducing and maintaining constant overshoot in a high speed driver. The circuit includes a predriver circuit which is driven single endedly and a driver circuit which is differentially driven by the predriver outputs. The predriver and the driver are differential pairs, with commonly controlled individual transistor current sources. A diode has been added in series with each emitter of the differential pairs. Schottky diodes are preferable because of their low capacitance. The diodes increase the input switching voltage (the smallest input voltage swing that will cause the outputs to fully switch) of the differential pair because they must also be switched on and off. The increase results in an increase in effective transition time, which results in smaller overshoots because the circuit is being switched slower. The output amplitude of the driver is set by a voltage which controls the current source currents of the commonly controlled current sources. As the amplitude is decreased the input switching voltage decreases because the current through the devices decreases which results in smaller base-emitter and diode voltages. Due to the commonly controlled current sources, the predriver amplitude decreases as the driver amplitude decreases. The predriver is designed such that its variable output supplies the driver with the proper input switching voltage at any driver amplitude. This keeps the effective input transition time constant which results in constant output overshoot.
摘要:
Apparatus and method for controlling an operation of a test pin of a per-pin semiconductor device test system [10]. The apparatus includes pattern storage memory [42] for storing and for outputting information related to a state of the test pin for individual ones of a plurality of consecutive test cycles, pattern processor [14] having an input coupled to the pattern storage memory for generating for each of the test cycles words comprised of M bits, and a test pin control memory [18] having an input coupled to the output of the pattern processor for decoding each of the words into 2 or less command words. Each of the decoded command words includes a plurality of control bits. Predetermined ones of the plurality of control bits are coupled to pin driver electronics [24,28] for specifying, for each of the test cycles, at least one characteristic of an electrical signal transmitted to the test pin. The test system also includes test pin signal receiving circuitry [26] for coupling to the test pin for receiving an electrical signal therefrom. Other predetermined ones of the control bits are coupled to the receiving circuitry for specifying, for each of the test cycles, at least one operating characteristic associated with the receiving circuitry.
摘要:
A high speed counter circuit for counting electrical pulses includes a master/slave flip-flop at the input stage of the counter. An AND gate logically ANDs the pulses being counted with the master output to produce a first gating signal. A plurality of cascade coupled flip-flops each having a slave and an inverse slave output are provided. The clock input to each cascade coupled flip-flop is produced by the logical OR of the electrical pulses being counted, the first gating signal and the slave output of all preceding flip-flops of the counter. The counter output is provided by the inverse slave output of each flip-flop.
摘要:
Apparatus and method for controlling an operation of a test pin of a per-pin semiconductor device test system [10]. The apparatus includes pattern storage memory [42] for storing and for outputting information related to a state of the test pin for individual ones of a plurality of consecutive test cycles, pattern processor [14] having an input coupled to the pattern storage memory for generating for each of the test cycles words comprised of M bits, and a test pin control memory [18] having an input coupled to the output of the pattern processor for decoding each of the words into 2 M or less command words. Each of the decoded command words includes a plurality of control bits. Predetermined ones of the plurality of control bits are coupled to pin driver electronics [24,28] for specifying, for each of the test cycles, at least one characteristic of an electrical signal transmitted to the test pin. The test system also includes test pin signal receiving circuitry [26] for coupling to the test pin for receiving an electrical signal therefrom. Other predetermined ones of the control bits are coupled to the receiving circuitry for specifying, for each of the test cycles, at least one operating characteristic associated with the receiving circuitry.
摘要:
A high speed counter circuit for counting electrical pulses includes a master/slave flip-flop at the input stage of the counter. An AND gate logically ANDs the pulses being counted with the master output to produce a first gating signal. A plurality of cascade coupled flip-flops each having a slave and an inverse slave output are provided. The clock input to each cascade coupled flip-flop is produced by the logical OR of the electrical pulses being counted, the first gating signal and the slave output of all preceding flip-flops of the counter. The counter output is provided by the inverse slave output of each flip-flop.
摘要:
Disclosed is a method and circuit for reducing and maintaining constant overshoot in a high speed driver. The circuit includes a predriver circuit which is driven single endedly and a driver circuit which is differentially driven by the predriver outputs. The predriver and the driver are differential pairs, with commonly controlled individual transistor current sources. A diode has been added in series with each emitter of the differential pairs. Schottky diodes are preferable because of their low capacitance. The diodes increase the input switching voltage (the smallest input voltage swing that will cause the outputs to fully switch) of the differential pair because they must also be switched on and off. The increase results in an increase in effective transition time, which results in smaller overshoots because the circuit is being switched slower. The output amplitude of the driver is set by a voltage which controls the current source currents of the commonly controlled current sources. As the amplitude is decreased the input switching voltage decreases because the current through the devices decreases which results in smaller base-emitter and diode voltages. Due to the commonly controlled current sources, the predriver amplitude decreases as the driver amplitude decreases. The predriver is designed such that its variable output supplies the driver with the proper input switching voltage at any driver amplitude. This keeps the effective input transition time constant which results in constant output overshoot.