Abstract:
The alloy fine particles of the present invertion are fine particles of a solid solution alloy, in which a plurality of metal elements are mixed at the atomic level. The production method of the present invention is a method for producing alloy fine particles composed of a plurality of metal elements. This production method includes the steps of: (i) preparing a solution containing ions of the plurality of metal elements and a liquid containing a reducing agent; and (ii) mixing the solution with the liquid that has been heated.
Abstract:
The alloy fine particles of the present invertion are fine particles of a solid solution alloy, in which a plurality of metal elements are mixed at the atomic level. The production method of the present invention is a method for producing alloy fine particles composed of a plurality of metal elements. This production method includes the steps of: (i) preparing a solution containing ions of the plurality of metal elements and a liquid containing a reducing agent; and (ii) mixing the solution with the liquid that has been heated.
Abstract:
The catalyst disclosed is a catalyst including palladium-ruthenium alloy fine particles in which palladium and ruthenium form a solid solution. The palladium-ruthenium alloy fine particles used in this catalyst can be produced by a production method including the step of maintaining a solution containing a protective agent, a reducing agent, a palladium compound or palladium ions, and a ruthenium compound or ruthenium ions at a temperature equal to or higher than a predetermined temperature.
Abstract:
Disclosed are ruthenium nanoparticles having an essentially face-centered cubic structure. Disclosed is a method for producing ruthenium nanoparticles having an essentially face-centered cubic structure. This production method includes a step (i) of maintaining a solution containing ruthenium (III) acetylacetonate, polyvinylpyrrolidone, and triethylene glycol at a temperature of 180°C or higher.