摘要:
A neutral or cationic mononuclear ruthenium divalent complex represented by formula (1) can actualize exceptional catalytic activity in at least one reaction among a hydrosilylation reaction, hydrogenation reaction, and carbonyl compound reduction reaction.
(In the formula, R 1 -R 6 each independently represent a hydrogen atom or an alkyl group, aryl group, aralkyl group, organooxy group, monoorganoamino group, diorganoamino group, monoorganophosphino group, diorganophosphino group, monoorganosilyl group, diorganosilyl group, triorganosilyl group, or organothio group optionally substituted by X; at least one pair comprising any of R 1 -R 3 and any of R 4 -R 6 together represents a crosslinkable substituent; X represents a halogen atom, organooxy group, monoorganoamino group, diorganoamino group, or organothio group; L each independently represent a two-electron ligand other than CO and thiourea ligands; two L may bond to each other; and m represents an integer of 3 or 4.)
摘要:
A hydrosilylation reaction catalyst prepared from: a catalyst precursor comprising a transition metal compound, excluding platinum, belonging to group 8-10 of the periodic table, e.g., iron acetate, cobalt acetate, nickel acetate, etc.; and a ligand comprising a carbine compound such as 1,3-dimesitylimidazol-2-ylidene, etc.. The hydrosilylation reaction catalyst has excellent handling and storage properties. As a result of using this catalyst, a hydrosilylation reaction can be promoted under gentle conditions.
摘要:
A hydrosilylation reaction catalyst prepared from: a prescribed transition metal compound such as iron pivalate, cobalt pivalate, iron acetate, cobalt acetate, or nickel acetate; a ligand comprising t-butylisocyanide or another isocyanide compound; and a borane compound, Grignard reagent, alkoxysilane, or other prescribed promoter makes it possible to promote a hydrosilylation reaction under moderate conditions, and has exceptional handling properties and storage stability.
摘要:
A mononuclear iron bivalent complex having iron-silicon bonds, which is represented by formula (1), can exhibit an excellent catalytic activity in at least one reaction selected from three reactions, i.e., a hydrosilylation reaction, a hydrogenation reaction and a reaction for reducing a carbonyl compound.
(In the formula, R 1 to R 6 independently represent a hydrogen atom, an alkyl group which may be substituted by X, or the like; X represents a halogen atom, or the like; L 1 represents at least one two-electron ligand selected from an isonitrile ligand, an amine ligand, an imine ligand, a nitrogenated heterocyclic ring, a phosphine ligand, a phosphite ligand and a sulfide ligand, wherein, when multiple L 1 's are present, two L 1 's may be bonded to each other; L 2 represents a two-electron ligand that is different from a CO ligand or the above-mentioned L 1 , wherein, when multiple L 2 's are present, two L 2 's may be bonded to each other; and m 1 represents an integer of 1 to 4 and m 2 represents an integer of 0 to 3, wherein the sum total of m 1 and m 2 (i.e., m 1 +m 2 ) satisfies 3 or 4.)
摘要:
A hydrosilylation iron catalyst prepared from a two-electron ligand (L) and a mononuclear, binuclear, or trinuclear complex of iron indicated by formula (1), Fe having bonds with carbon atoms included in X and the total number of Fe-carbon bonds being 2-10. As a result of using iron, the hydrosilylation iron catalyst is advantageous from a cost perspective as well as being easily synthesized. Hydrosilylation reactions can be promoted under mild conditions by using this catalyst.
Fe(X) a (1)
(in the formula, each X independently indicates a C2-30 ligand that may include an unsaturated group excluding carbonyl groups (CO groups) and cyclopentadienyl groups, however at least one X includes an unsaturated group, a indicates an integer of 2-4 per Fe atom.)