摘要:
P-type active region 12 ; n-type source/drain regions 13a and 13b ; gate insulating film 14 made of a thermal oxide film; gate electrode 15 ; source/drain electrodes 16a and 16b , are provided over a p-type Sic substrate 11 . In the active region 12 , p-type heavily doped layers 12a , which are thin enough to create a quantum effect, and thick undoped layers 12b are alternately stacked. when carriers flow, scattering of impurity ions in the active region is reduced, and the channel mobility increases. In the OFF state, a depletion layer expands throughout the active region, and the breakdown voltage increases. As a result of reduction in charges trapped in the gate insulating film or near the interface between the gate insulating film and the active region, the channel mobility further increases.
摘要:
An insulated-gate semiconductor element having a high breakdown voltage is provided. The surface of a silicon carbide substrate is etched to form a concave portion. A particle beam, for example an ion beam, is irradiated from above, and a defect layer is formed at least in a bottom surface of the concave portion. The substrate is heated in an oxidation atmosphere, and an oxide film is formed at least on a side surface and the bottom surface of the concave portion. A gate electrode is formed on the oxide film. The oxide film at the bottom surface is thicker than at the side surfaces, so that a high breakdown voltage can be ensured, even when the surface of the silicon carbide layer is a face with which a superior epitaxial layer can be attained, such as the (111) Si-face of β -SiC or the (0001) Si-face of α -SiC.
摘要:
Si and SiGeC layers are formed in an NMOS transistor on a Si substrate. A carrier accumulation layer is formed with the use of a discontinuous portion of a conduction band present at the heterointerface between the SiGeC and Si layers. Electrons travel in this carrier accumulation layer serving as a channel. In the SiGeC layer, the electron mobility is greater than in silicon, thus increasing the NMOS transistor in operational speed. In a PMOS transistor, a channel in which positive holes travel, is formed with the use of a discontinuous portion of a valence band at the interface between the SiGe and Si layers. In the SiGe layer, too, the positive hole mobility is greater than in the Si layer, thus increasing the PMOS transistor in operational speed. There can be provided a semiconductor device having field-effect transistors having channels lessened in crystal defect.
摘要:
An insulated-gate semiconductor element having a high breakdown voltage is provided. The surface of a silicon carbide substrate is etched to form a concave portion. A particle beam, for example an ion beam, is irradiated from above, and a defect layer is formed at least in a bottom surface of the concave portion. The substrate is heated in an oxidation atmosphere, and an oxide film is formed at least on a side surface and the bottom surface of the concave portion. A gate electrode is formed on the oxide film. The oxide film at the bottom surface is thicker than at the side surfaces, so that a high breakdown voltage can be ensured, even when the surface of the silicon carbide layer is a face with which a superior epitaxial layer can be attained, such as the (111) Si-face of beta -SiC or the (0001) Si-face of alpha -SiC.
摘要:
A Pt/Ti film is formed on a substrate, and the Pt/Ti film is patterned into a bottom electrode. Subsequently, a SrTiO 3 film, that is, a dielectric film, is formed on the substrate by sputtering using a mixture of an Ar gas, an O 2 gas and a N 2 gas as a film forming gas. The SrTiO 3 film is patterned into a capacitor dielectric film formed on the bottom electrode. A top electrode is then formed on the capacitor dielectric film. Since a N 2 gas is used as the film forming gas in addition to an Ar/O 2 gas, a SrTiO 3 film with a high dielectric constant and small leakage can be formed at a low temperature. By using this SrTiO 3 film, a thin film capacitor with high capacitance and good dielectric characteristics can be obtained.
摘要:
Si and SiGeC layers are formed in an NMOS transistor on a Si substrate. A carrier accumulation layer is formed with the use of a discontinuous portion of a conduction band present at the heterointerface between the SiGeC and Si layers. Electrons travel in this carrier accumulation layer serving as a channel. In the SiGeC layer, the electron mobility is greater than in silicon, thus increasing the NMOS transistor in operational speed. In a PMOS transistor, a channel in which positive holes travel, is formed with the use of a discontinuous portion of a valence band at the interface between the SiGe and Si layers. In the SiGe layer, too, the positive hole mobility is greater than in the Si layer, thus increasing the PMOS transistor in operational speed. There can be provided a semiconductor device having field-effect transistors having channels lessened in crystal defect.
摘要:
A magnetoresistive effect element having a large magnetoresistive change with a small magnetic field, and a memory element using the same. A semiconductor film 2 to provide a window for excitation light is arranged on a substrate 1 via a buffer layer. Another semiconductor film 3 and a nonmagnetic metallic film (or a nonmagnetic insulating film) 4 are arranged on the semiconductor film 2 successively. A magnetic film 5 having a square magnetization curve is arranged on the nonmagnetic metallic film (or a nonmagnetic insulating film) 4. An electrode 6 is arranged beneath the substrate 1 and another electrode 7 is arranged on the magnetic film 5. By radiating a laser light beam to the semiconductor film acting as a window 2, electrons having spin polarization are excited in the semiconductor film 3 so as to utilize the dependency of the scattering of electrons at the surface of the magnetic film 5 on the magnetization orientation of the magnetic film and the spin polarization state of the excited electrons.
摘要:
An n-type diffusion layer (10), an insulating layer (11) and a first aluminum electrode (12) are formed on a p-type silicon substrate. Fe 2+ (divalent Fe) having a vacant orbit not filled with an electron is implanted into a region of the insulating layer to form an impurity atom layer (11a). A second aluminum electrode is formed which is in contact with the n-type diffusion layer. A voltage that increases the potential of the first aluminum electrode is applied between the first and second aluminum electrodes. The voltage is increased. In this situation, when the fermi level of the n-type diffusion layer and an impurity level which is the energy level for filling the vacant orbit of the Fe 2+ are matched, a resonance tunnelling current flows. Thereafter, when there is a change to the state of non-resonance state, a negative-resistance characteristic is exhibited in which the current decreases as the voltage is increased. Accordingly, the present invention is able to provide a low-power, low-voltage, fast nonlinear element that can well be incorporated into the integrated circuit, and a bistable memory device employing such an improved nonlinear element.