摘要:
A semiconductor light-emitting device with a double hetero structure, including: an active layer made of Ga 1-x In x N (0 ≤ x ≤ 0.3) doped with a p-type impurity and an n-type impurity; and first and second cladding layers provided so as to sandwich the active layer.
摘要:
A first insulating film is formed on a semiconductor substrate. A metal wire made of an aluminum alloy containing copper is formed on the first insulating film. An antireflection film is formed on the top face of the metal wire. On the region of the side face of the metal wire uncovered with an aluminum oxide film, there is formed a copper sulfide film, which is a sulfide film of copper. A second insulating film is formed over the metal wire formed with the antireflection film as well as the copper sulfide film and the first insulating film.
摘要:
Method for producing a semiconductor light-emitting device comprising the step of forming a semiconductor structure having a projected portion and a concave portion and mounting the semiconductor structure on a heat sink.
摘要:
The bipolar transistor of the present invention includes a Si collector buried layer, a first base region made of a SiGeC layer having a high C content, a second base region made of a SiGeC layer having a low C content or a SiGe layer, and a Si cap layer 14 including an emitter region. The C content is less than 0.8% in at least the emitter-side boundary portion of the second base region. This suppresses formation of recombination centers due to a high C content in a depletion layer at the emitter-base junction, and improves electric characteristics such as the gain thanks to reduction in recombination current, while low-voltage driving is maintained.
摘要:
An Si 1-y Ge y layer (where 0 1-y Ge y layers. Since C is contained in the Si layer, movement, diffusion and segregation of Ge atoms in the Si 1-y Ge y layer can be suppressed. As a result, the Si/Si 1-y Ge y interface can have its structural disorder eased and can be kept definite and planar. Thus, the mobility of carriers moving along the interface in the channel can be increased. That is to say, the thermal budget of the semiconductor device during annealing can be improved. Also, by grading the concentration profile of C, the diffusion of C into the gate insulating film can be suppressed and decline in reliability can be prevented.
摘要:
Si and SiGeC layers are formed in an NMOS transistor on a Si substrate. A carrier accumulation layer is formed with the use of a discontinuous portion of a conduction band present at the heterointerface between the SiGeC and Si layers. Electrons travel in this carrier accumulation layer serving as a channel. In the SiGeC layer, the electron mobility is greater than in silicon, thus increasing the NMOS transistor in operational speed. In a PMOS transistor, a channel in which positive holes travel, is formed with the use of a discontinuous portion of a valence band at the interface between the SiGe and Si layers. In the SiGe layer, too, the positive hole mobility is greater than in the Si layer, thus increasing the PMOS transistor in operational speed. There can be provided a semiconductor device having field-effect transistors having channels lessened in crystal defect.
摘要:
Si and SiGeC layers are formed in an NMOS transistor on a Si substrate. A carrier accumulation layer is formed with the use of a discontinuous portion of a conduction band present at the heterointerface between the SiGeC and Si layers. Electrons travel in this carrier accumulation layer serving as a channel. In the SiGeC layer, the electron mobility is greater than in silicon, thus increasing the NMOS transistor in operational speed. In a PMOS transistor, a channel in which positive holes travel, is formed with the use of a discontinuous portion of a valence band at the interface between the SiGe and Si layers. In the SiGe layer, too, the positive hole mobility is greater than in the Si layer, thus increasing the PMOS transistor in operational speed. There can be provided a semiconductor device having field-effect transistors having channels lessened in crystal defect.
摘要:
A lateral heterojunction bipolar transistor comprises a first semiconductor layer in a mesa configuration disposed on an insulating layer, a second semiconductor layer formed by epitaxial growth on the side surfaces of the first semiconductor layer and having a band gap different from that of the first semiconductor layer, and a third semiconductor layer formed by epitaxial growth on the side surfaces of the second semiconductor layer and having a band gap different from that of the second semiconductor layer. The first semiconductor layer serves as a collector (101) of a first conductivity type. At least a part of the second semiconductor layer (102) serves as an internal base layer (102a) of a second conductivity type. At least a part of the third semiconductor layer (103) serves as an emitter operating region of the first conductivity type. The diffusion of an impurity is suppressed in the internal base formed by epitaxial growth.