摘要:
The semiconductor device has a semiconductor layer, a gate electrode which covers an end portion of the semiconductor layer, and an insulating layer for insulating the semiconductor layer and the gate electrode. The film thickness of the insulating layer which insulates a region where an end portion of the semiconductor layer and the gate electrode overlap each other is thicker than the film thickness of the insulating layer which covers the central portion of the semiconductor layer.
摘要:
The semiconductor device has a semiconductor layer, a gate electrode which covers an end portion of the semiconductor layer, and an insulating layer for insulating the semiconductor layer and the gate electrode. The film thickness of the insulating layer which insulates a region where an end portion of the semiconductor layer and the gate electrode overlap each other is thicker than the film thickness of the insulating layer which covers the central portion of the semiconductor layer.
摘要:
The semiconductor device has a semiconductor layer, a gate electrode which covers an end portion of the semiconductor layer, and an insulating layer for insulating the semiconductor layer and the gate electrode. The film thickness of the insulating layer which insulates a region where an end portion of the semiconductor layer and the gate electrode overlap each other is thicker than the film thickness of the insulating layer which covers the central portion of the semiconductor layer.
摘要:
To fabricate a crystalline semiconductor film with controlled locations and sizes of the crystal grains, and to utilize the crystalline semiconductor film in the channel-forming region of a TFT in order to realize a high-speed operable TFT. A translucent insulating thermal conductive layer 2 is provided in close contact with the main surface of a substrate 1, and an insular or striped first insulating layer 3 is formed in selected regions on the thermal conductive layer. A second insulating layer 4 and semiconductor film 5 are laminated thereover. The semiconductor film 5 is first formed with an amorphous semiconductor film, and then crystallized by laser annealing. The first insulating layer 3 has the function of controlling the rate of heat flow to the thermal conductive layer 2, and the temperature distribution difference on the substrate 1 is utilized to form a single-crystal semiconductor film on the first insulating layer 3.
摘要:
A method of repairing a light emitting device which makes high quality image display possible even if a pin hole is formed during formation of an EL layer is provided. The method of repairing a light emitting device is characterized in that a reverse bias voltage is applied to an EL element at given time intervals to thereby reduce a current flowing into an EL element when the reverse bias voltage is applied to the EL element.
摘要:
An object of the present invention is to provide a simple process to manufacture a wiring connecting photoelectric cells in a photoelectric conversion device. Another object of this invention is to prevent defective rupture from occurring in the said wiring. The photoelectric conversion device comprises a first and a second photoelectric conversion cells comprising respectively a first and a second single crystal semiconductor layers. First electrodes are provided on the downwards surfaces of the first and second photoelectric conversion cells, and second electrodes are provided on their upwards surfaces. The first and second photoelectric conversion cells are fixed onto a support substrate side by side. The second single crystal semiconductor layer has a through hole which reaches the first electrode. The second electrode of the first photoelectric conversion cell is extended to the through hole to be electrically connected to the first electrode of the second photoelectric conversion cell.
摘要:
The present invention aims to provide simple, high-speed processing for the formation of an EL layer by an ink-jet method. A method of manufacturing an electro-optical device having good operation performance and high reliability, and in particular, a method of manufacturing an EL display device, is provided. The present invention forms EL layers continuously across a plurality of pixels when the EL layers are formed by the ink-jet method. Specifically, with respect to m columns and n rows of pixel electrodes arranged in a matrix state, the EL layers are formed so as to form stripes with respect to one certain selected row or one column. The EL layers may also be formed having an oblong shape or a rectangular shape with respect to each pixel electrode.