Abstract:
A method of fabricating a thermoelectric converter comprises: providing a layer (115; 215) of a Silicon-based material having a first surface and a second surface, opposite to and separated from the first surface by a Silicon-based material layer thickness; forming a plurality of first thermoelectrically active elements (133a; 237; 330a) of a first thermoelectric semiconductor material having a first Seebeck coefficient, and forming a plurality of second thermoelectrically active elements (133b; 249; 330b) of a second thermoelectric semiconductor material having a second Seebeck coefficient, wherein the first and second thermoelectrically active elements are formed to extend through the Silicon-based material layer (115; 215) thickness, from the first surface to the second surface; forming electrically conductive interconnections (143, 413; 257, 413) in correspondence of the first surface and of the second surface of the layer of Silicon-based material (115; 215),, for electrically interconnecting the plurality of first thermoelectrically active elements and the plurality of second thermoelectrically active elements, and forming an input electrical terminal (257') and an output electrical terminal (257") electrically connected to the electrically conductive interconnections, wherein the first thermoelectric semiconductor material and the second thermoelectric semiconductor material comprise Silicon-based materials selected among porous Silicon or polycrystalline SiGe or polycrystalline Silicon.
Abstract:
A method of fabricating a thermoelectric converter comprises: providing a layer (115; 215) of a Silicon-based material having a first surface and a second surface, opposite to and separated from the first surface by a Silicon-based material layer thickness; forming a plurality of first thermoelectrically active elements (133a; 237; 330a) of a first thermoelectric semiconductor material having a first Seebeck coefficient, and forming a plurality of second thermoelectrically active elements (133b; 249; 330b) of a second thermoelectric semiconductor material having a second Seebeck coefficient, wherein the first and second thermoelectrically active elements are formed to extend through the Silicon-based material layer (115; 215) thickness, from the first surface to the second surface; forming electrically conductive interconnections (143, 413; 257, 413) in correspondence of the first surface and of the second surface of the layer of Silicon-based material (115; 215),, for electrically interconnecting the plurality of first thermoelectrically active elements and the plurality of second thermoelectrically active elements, and forming an input electrical terminal (257') and an output electrical terminal (257") electrically connected to the electrically conductive interconnections, wherein the first thermoelectric semiconductor material and the second thermoelectric semiconductor material comprise Silicon-based materials selected among porous Silicon or polycrystalline SiGe or polycrystalline Silicon.
Abstract:
A load-sensing device (10), arranged in a package (12) forming a chamber (24). The package (12) has a deformable substrate (21) configured, in use, to be deformed by an external force. A sensor unit (11) is in direct contact with the deformable substrate (21) and is configured to detect deformations of the deformable substrate. An elastic element (15) is arranged within of the chamber (24) and acts between the package (12) and the sensor unit (11) to generate, on the sensor unit, a force keeping the sensor unit in contact with the deformable substrate. For example, the deformable substrate is a base (21) of the package (12), and the elastic element is a metal lamina (15) arranged between the lid (22) of the package (12) and the sensor unit (11). The sensor unit (11) may be a semiconductor die integrating piezoresistors.
Abstract:
An electrostatic micromotor (10') is provided with a fixed substrate (12), a mobile substrate (13) facing the fixed substrate (12), and electrostatic-interaction elements (14, 15, 17) enabling a relative movement of the mobile substrate (3) with respect to the fixed substrate (2) in a movement direction (x); the electrostatic micromotor is also provided with a capacitive position-sensing structure (18') configured to enable sensing of a relative position of the mobile substrate (13) with respect to the fixed substrate (12) in the movement direction (x). The capacitive position-sensing structure (18') is formed by at least one sensing indentation (22), extending within the mobile substrate (13) from a first surface (13a; 13b) thereof, and by at least one first sensing electrode (24), facing, in at least one given operating condition, the sensing indentation (22).
Abstract:
A packaged pressure sensor, comprising: a MEMS pressure-sensor chip; and an encapsulating layer of elastomeric material, in particular PDMS, which extends over the MEMS pressure-sensor chip and forms a means for transferring a force, applied on a surface thereof, towards the MEMS pressure-sensor chip.
Abstract:
Device (100) for detecting and monitoring local parameters within a solid structure (300). The device comprises an integrated detection module (1) made on a single chip, having an integrated functional circuitry portion (16) comprising at least one integrated sensor (10) and an integrated antenna (11), and electromagnetic means (2) for transmitting/receiving signals and energy exchange. The integrated functional circuitry portion (16) comprises a functional surface (18) facing towards the outside of the chip. A passivation layer (15) is arranged to completely cover at least the functional surface (18), so that the integrated detection module (1) is entirely hermetically sealed and galvanically insulated from the surrounding environment. The integrated antenna (11), the electromagnetic means (2) and the remote antenna (221) are operatively connected wirelessly through magnetic or electromagnetic coupling.
Abstract:
In a pressure sensor (35), a pressure-sensor element (10) has a monolithic body (12) of semiconductor material, and a first main face (12a) and a second main face (12b) acting on which is a stress resulting from a pressure (P) the value of which is to be determined; and a package (36) encloses the pressure-sensor element (10). The package (36) has an inner chamber (37) containing liquid material (38), and the pressure-sensor element (10) is arranged within the inner chamber (37) in such a manner that the first and second main faces (12a, 12b) are both in contact with the liquid material (38). In particular, the liquid material is a silicone gel.