摘要:
An object of the present invention is to provide a method for producing a metal laminate material that maintains sufficient bonding strength and has superior production efficiency. A method for producing a metal laminate material by bonding two sheets, one sheet composed of a material M1 and the other sheet composed of a material M2, wherein each of M1 and M2 is a metal or alloy comprising any one or more selected from the group consisting of Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Pd, Ag, In, Sn, Hf, Ta, W, Pb, and Bi, comprises the steps of: subjecting the faces of the two sheets to be bonded to sputtering treatment with inert gas ions under vacuum such that oxide layers on surface layers remain; temporarily bonding the two sheets by roll pressure bonding; and conducting a thermal treatment to thereby bond the two sheets, and, when Tm1 > Tm2 where Tm1(K) is the melting point of M1 and Tm2(K) is the melting point of M2, the temperature of the thermal treatment is 0.45Tm2 or more and less than 0.45Tm1, provided that the temperature is not more than Tm2.
摘要:
An object of the present invention is to provide a production method for efficiently producing a metal laminate having high bonding strength. A method for producing a metal laminate material comprising the steps of: sputter etching faces to be bonded of a stainless steel and an aluminum such that an oxide layer remains on each face; temporarily bonding the faces to be bonded of the stainless steel and the aluminum by roll pressure bonding; and thermally treating the temporarily bonded laminate material at a temperature lower than the recrystallization temperature of the stainless steel to thermally diffuse at least a metal element comprised in the stainless steel into the aluminum.
摘要:
Provided are a substrate for a superconducting compound and a method for manufacturing the substrate which can realize the excellent adhesive strength simultaneously with high orientation of copper. An absorbed material on a surface of a copper foil to which rolling is applied at a draft of 90% or more is removed by applying sputter etching to the surface of the copper foil, sputter etching is applied to a nonmagnetic metal sheet, the copper foil and the metal sheet are bonded to each other by applying a pressure to the copper foil and the metal sheet using reduction rolls, crystals of the copper in the copper foil are oriented by heating a laminated body formed bysuchbonding, copper is diffused into the metal sheet by heating with a copper diffusion distance of 10nm or more, and a protective layer is laminated to a surface of the copper foil of the laminated body.
摘要:
An objective of the present invention is to provide a copper substrate for epitaxial growth, which has higher biaxial crystal orientation, and a method for manufacturing the same. The substrate for epitaxial growth of the present invention contains a biaxially crystal-oriented copper layer, wherein the full width at half maximum ”Æ of a peak based on the pole figure of the copper layer is within 5° and the tail width ”² of the peak based on the pole figure is within 15°. Such a substrate for epitaxial growth is manufactured by a 1 st step of performing heat treatment of a copper layer so that ”Æ is within 6° and the tail width ”² is within 25°, and after the 1 st step, a 2 nd step of performing heat treatment of the copper layer at a temperature higher than the temperature for heat treatment in the 1 st step, so that ”Æ is within 5° and the tail width ”² is within 15°.
摘要:
Disclosed is a metal laminated substrate for forming an epitaxial growth film for forming a semiconductor element having high biaxial crystal orientation on a surface of a metal substrate and a method of manufacturing the metal laminated substrate. The manufacturing method includes the steps of activating at least one surface of a metal plate T1 by sputter etching or the like; activating at least one surface of a metal foil T2 made of Cu or a Cu alloy which is cold-rolled at a rolling reduction of 90% or more; laminating the metal plate and the metal foil such that an activated surface of the metal plate and an activated surface of the metal foil face each other in an opposed manner and applying cold rolling to the metal plate and the metal foil which are laminated to each other at a rolling reduction of 10% or less, for example; and biaxially orienting crystals of the metal foil by heat treatment at a temperature of not lower than 150°C and not higher than 1000°C.