摘要:
A catalyst particle is composed of an inner particle and an outermost layer that includes platinum and covers the inner particle. The inner particle includes on at least a surface thereof a first oxide having an oxygen defect.
摘要:
A catalyst particle is composed of an inner particle and an outermost layer that includes platinum and covers the inner particle. The inner particle includes on at least a surface thereof a first oxide having an oxygen defect.
摘要:
An object of the present invention is to provide core-shell type metal nanoparticles having a high surface coverage of the core portion with the shell portion, and a method for producing the same. Disclosed is core-shell type metal nanoparticles comprising a core portion and a shell portion covering the core portion, wherein the core portion comprises a core metal material selected from metals and alloys, and wherein the shell portion comprises an alloy of a first shell metal material and a second shell metal material.
摘要:
Disclosed is a catalyst particle having high catalyst activity and a method for producing the catalyst particle. A catalyst particle comprising a core particle which contains a palladium alloy and an outermost layer which contains platinum, wherein an interlayer comprising only palladium as a simple substance is present between the core particle and the outermost layer.
摘要:
The present invention is to provide such a carbon-supported catalyst that an activity expected from a catalytic activity by rotating disk electrode (RDE) evaluation is maintained even after the formation of a membrane electrode assembly (MEA). Disclosed is a carbon-supported catalyst wherein the carbon-supported catalyst includes fine catalyst particles that have a palladium-containing particle and a platinum-containing outermost layer covering at least part of the palladium-containing particle, and a carbon support supporting the fine catalyst particles, and wherein, in a cyclic voltammogram that is obtained by measuring, in an acid solution, the carbon-supported catalyst applied to a measurement electrode made of an electroconductive material, the proportion of the area of a hydrogen adsorption region that appears in a reduction current region to the total area of the hydrogen adsorption region and a hydrogen occlusion region that appears in the reduction current region, is 29% to 36%.
摘要:
The present invention is to provide a method for producing a catalyst for fuel cells with excellent durability, and a fuel cell comprising a catalyst for fuel cells produced by the production method. Disclosed is a method for producing a catalyst for fuel cells, the catalyst comprising fine catalyst particles, each of which comprises a palladium-containing core particle and a platinum-containing outermost layer covering the core particle, and carbon supports on which the fine catalyst particles are supported, wherein the method comprises the steps of: preparing carbon supports on which palladium-containing particles are supported; fining the carbon supports; and covering the palladium-containing particles with a platinum-containing outermost layer after the fining step.
摘要:
The present invention provides a fuel cell which is capable of improving electric power generation efficiency at a time of high-temperature operation. The fuel cell 10 comprising: a membrane electrode assembly 4; and a pair of gas separators 7, 8 sandwiching the membrane electrode assembly 4 therebetween, wherein at least one of the gas separator(s) 7 and/or 8 comprises a compact layer(s) 7c and/or 8c which is capable of preventing permeation of fluid and a porous layer(s) 7d and/or 8d which allows permeation of fluid, and the porous layer(s) 7d and/or 8d is impregnated with a water-soluble liquid having higher boiling point than that of water.
摘要:
The present invention is to provide such a carbon-supported catalyst that an activity expected from a catalytic activity by rotating disk electrode (RDE) evaluation is maintained even after the formation of a membrane electrode assembly (MEA). Disclosed is a carbon-supported catalyst wherein the carbon-supported catalyst includes fine catalyst particles that have a palladium-containing particle and a platinum-containing outermost layer covering at least part of the palladium-containing particle, and a carbon support supporting the fine catalyst particles, and wherein, in a cyclic voltammogram that is obtained by measuring, in an acid solution, the carbon-supported catalyst applied to a measurement electrode made of an electroconductive material, the proportion of the area of a hydrogen adsorption region that appears in a reduction current region to the total area of the hydrogen adsorption region and a hydrogen occlusion region that appears in the reduction current region, is 29% to 36%.