Abstract:
This control device for an internal combustion engine is equipped with: an air/fuel ratio sensor (41) provided to the exhaust passage of an internal combustion engine; and an engine control device that controls the internal combustion engine on the basis of the sensor output current of the air/fuel ratio sensor. The air/fuel ratio sensor is equipped with: a gas chamber (51) to be measured, into which exhaust gas flows; a reference cell (61) for which the reference cell output current varies according to the air/fuel ratio of the exhaust gas inside the gas chamber to be measured; and a pump cell (60) that, according to the pump current, pumps oxygen into or out of the exhaust gas in the gas chamber to be measured. The reference cell is configured so that the applied voltage, at which the reference cell output current reaches zero, varies according to the air/fuel ratio of the exhaust gas in the gas chamber to be measured. The applied voltage in the reference cell is fixed at a constant voltage, said constant voltage being set to a voltage different to the voltage at which the reference cell output current reaches zero when the air/fuel ratio of the exhaust gas in the gas chamber to be measured is the stoichiometric air/fuel ratio.
Abstract:
This control device for an internal combustion engine is equipped with: an air/fuel ratio sensor provided to the exhaust passage of an internal combustion engine; and an engine control device that controls the internal combustion engine according to the output of the air/fuel ratio sensor. The air/fuel ratio sensor is equipped with: a gas chamber to be measured, into which exhaust gas flows; a pump cell that pumps oxygen into or out of the gas chamber to be measured according to the pump current; and a reference cell of which the reference cell output current detected varies according to the air/fuel ratio inside the gas chamber to be measured. The reference cell is equipped with: a first electrode that is exposed to the exhaust gas in the gas chamber to be measured; a second electrode exposed to a reference atmosphere; and a solid electrolyte layer arranged between the electrodes. The air/fuel ratio sensor is equipped with: a reference cell voltage applying device that applies a sensor applied voltage between the electrodes; and a reference cell output current detection device that detects, as the reference cell output current, the current flowing between the electrodes.
Abstract:
A catalyst deterioration determination system for determining deterioration of an exhaust gas purification catalyst having a capability of storing oxygen determines deterioration of the exhaust gas purification catalyst on the basis of its oxygen storage capacity. The system includes an oxygen concentration sensor provided downstream of the catalyst and having characteristics by which as rich gas components in exhaust gas increase, the oxygen concentration sensor outputs a measurement value of the oxygen concentration corresponding to a richer air-fuel ratio. When determining deterioration, the system performs a rich shift mode in which the exhaust gas air-fuel ratio is shifted from a lean air-fuel ratio to a rich air-fuel ratio and a lean shift mode in which the exhaust gas air-fuel ratio is shifted from a rich air-fuel ratio to a lean air-fuel ratio by exhaust gas air-fuel ratio control means, based on the measurement value of the oxygen concentration sensor. The rate of change of the exhaust gas air-fuel ratio in at least the lean shift mode among the rich shift mode and the lean shift mode is limited to a predetermined rate of change or lower, and the rate of change of the exhaust gas air-fuel ratio in the rich shift mode is set higher than the rate of change of the exhaust gas air furl ratio in the lean shift mode.
Abstract:
The abnormality diagnosis system of an air-fuel ratio sensor comprising an exhaust purification catalyst, an upstream side air-fuel ratio sensor provided at an upstream side of the exhaust purification catalyst, a downstream air-fuel ratio sensor provided at a downstream side of the exhaust purification catalyst, and a diagnosis device diagnosing the downstream air-fuel ratio sensor for abnormality based on outputs of these air-fuel ratio sensors. The diagnosis device judges that the downstream air-fuel ratio sensor suffers from an abnormality if the output air-fuel ratio of the upstream side air-fuel ratio sensor has become a rich air-fuel ratio richer than a stoichiometric air-fuel ratio, and the output air-fuel ratio of the downstream air-fuel ratio sensor air-fuel ratio has changed from an air-fuel ratio richer than a lean judged reference air-fuel ratio to an air-fuel ratio leaner than the lead judged reference air-fuel ratio. As a result, it is possible to accurately diagnose an abnormality of a downstream air-fuel ratio sensor when using an air-fuel ratio sensor as a downstream side sensor.
Abstract:
An internal combustion engine comprises an exhaust purification catalyst (20) and an air-fuel ratio sensor (41) arranged at a downstream side of the exhaust purification catalyst, stops or decreases a feed of fuel as fuel cut control, and controls an air-fuel ratio of exhaust gas to a rich air-fuel ratio after the end of the fuel cut control as post reset rich control. A first characteristic of change of air-fuel ratio at the time the output air-fuel ratio first passes a first air-fuel ratio region X and a second characteristic of change of air-fuel ratio at the time when the output air-fuel ratio first passes a second air-fuel ratio region Y different from the first air-fuel ratio region X are calculated. The diagnosis system judges any one of normality, abnormality, and whether a hold should be put on judgment for the state of the air-fuel ratio sensor, based on the first characteristic of change of air-fuel ratio and, if it is judged that a hold should be put on judgment, judges if the state of the air-fuel ratio sensor is normal or abnormal based on the second characteristic of change of air-fuel ratio. As a result, it is possible to suppress the effects of the change of state of the exhaust purification catalyst while accurately diagnosing the abnormality of deterioration of response of a downstream side air-fuel ratio sensor.
Abstract:
When an air-fuel ratio detection performed by detecting an output of a downstream sensor (10), which is a limiting-current type air-fuel ratio sensor arranged at a downstream side of a catalyst (6) in an exhaust passage (4) of an internal combustion engine (2), and calculating an air-fuel ratio at the downstream side of the catalyst (6) in accordance with the output, if the output is within a predetermined range including an output corresponding to a theoretical air-fuel ratio, a relationship between the output and an air-fuel ratio that is calculated by calculation means is shifted more to a rich side relative to a correspondence relationship between an output of an upstream sensor (10), which is a similar sensor to the downstream sensor (10) arranged at an upstream side of the catalyst in the exhaust passage (4) of the engine (2), and an air-fuel ratio.