摘要:
An osmolarity measuring system includes the ability to recognize patterns within the electrical profile of nanoliters of fluid an account for corruptive signals in the electrical profile. These corruptive signals are mainly caused by the mechanical relaxation of the sample fluid after delivery or evaporation across the electrodes.
摘要:
The present invention provides a pharmaceutical composition, and methods of use thereof, for treating ocular boundary deficiency, symptoms associated therewith, or undesired condition that is associated with or causes ocular boundary deficiency at the ocular surface. The pharmaceutical composition of the present invention comprises a human PRG4 protein, a lubricant fragment, homolog, or isoform thereof, suspended in an ophthalmically acceptable balanced salt solution. The pharmaceutical composition of the present invention may also comprise one or more ophthalmically acceptable agents selected from the group consisting of an ophthalmically acceptable demulcent. excipient, astringent, vasoconstrictor, emollient, sodium hyaluronate, hyaluronic acid, and surface active phospholipids, in a pharmaceutically acceptable carrier for topical administration.
摘要:
In accordance with the invention, a fluid sample is measured with a tear film measuring system that includes a processing device that receives a sample chip comprising a sample region configured to contain an aliquot volume of sample fluid, the processing device configured to perform analyses of osmolarity and of one or more biomarkers within the sample fluid, wherein the analysis of biomarkers includes normalization of biomarker concentration values.
摘要:
Devices and techniques are described that involve a combination of multidimensional electrokinetic, dielectrophoretic, electrophoretic and fluidic forces and effects for separating cells, nanovesicles, nanoparticulates and biomarkers (DNA, RNA, antibodies, proteins) in high conductance (ionic) strength biological samples and buffers. In disclosed embodiments, a combination of continuous and/or pulsed dielectrophoretic (DEP) forces, continuous and/or pulsed field DC electrophoretic forces, microelectrophoresis and controlled fluidics are utilized with arrays of electrodes. In particular, the use of chambered DEP devices and of a properly scaled relatively larger electrode array devices that combines fluid, electrophoretic and DEP forces enables both larger and/or clinically relevant volumes of blood, serum, plasma or other samples to be more directly, rapidly and efficiently analyzed. The invention enables the creation of “seamless” sample-to-answer diagnostic systems and devices. The devices and techniques described can also carry out the assisted self-assembly of molecules, polymers, nanocomponents and mesoscale entities into three dimensional higher order structures.
摘要:
Devices and techniques are described that involve a combination of multidimensional electrokinetic, dielectrophoretic, electrophoretic and fluidic forces and effects for separating cells, nanovesicles, nanoparticulates and biomarkers (DNA, RNA, antibodies, proteins) in high conductance (ionic) strength biological samples and buffers. In disclosed embodiments, a combination of continuous and/or pulsed dielectrophoretic (DEP) forces, continuous and/or pulsed field DC electrophoretic forces, microelectrophoresis and controlled fluidics are utilized with arrays of electrodes. In particular, the use of chambered DEP devices and of a properly scaled relatively larger electrode array devices that combines fluid, electrophoretic and DEP forces enables both larger and/or clinically relevant volumes of blood, serum, plasma or other samples to be more directly, rapidly and efficiently analyzed. The invention enables the creation of "seamless" sample-to-answer diagnostic systems and devices. The devices and techniques described can also carry out the assisted self-assembly of molecules, polymers, nanocomponents and mesoscale entities into three dimensional higher order structures.
摘要:
The present invention relates to nanoscale transduction systems that produce reversible signals to facilitate detection. In one respect, the invention relates to the analysis of molecular binding events using higher order signaling nanoscale constructs, or 'nanomachines', that allow nanostructures to be individually detectable, even in the midst of high background noise. Such systems are particularly useful for improving the performance of rare target detection methods, as well as being generally useful in any field in which sensitivity, discrimination and confidence in detection are important.