Abstract:
Computer-controlled illumination systems that can be used to select a variety of wavelengths of light and intensities of such wavelengths suitable for the activation of various kinds of photodynamic drugs, for various types of phototherapy. If desired, the systems can work interactively with a measurement system to measure the quantity of some types of photodynamic drugs present in a tissue.
Abstract:
The apparatus and methods herein provide quantitatively controllable light sources and expanded dynamic range endoscopy systems that can improve the quality of images and the ability of users to distinguish desired features when viewing tissues by providing methods and apparatus that improve the dynamic range of images from endoscopes, in particular for example with endoscopes that have dynamic range limited because of small image sensors and small pixel electron well capacity, and other optical system constraints. The apparatus and methods herein, for example, combine light sources with quantitatively variable spectral output and quantitatively variable wavelength dependent intensity distribution with image sensors and controllers to create an expanded dynamic range endoscopy system. By digitally combining illumination data from the digitally controllable light source with the digital image data from the image sensor the system synthesizes expanded dynamic range images whose dynamic range exceeds the dynamic range of the image sensor alone thus providing greatly enhanced information content in the acquired images.
Abstract:
Illumination exposure control systems comprising reflective pixelated spatial light modulators that reflect substantially all of the light impinging on them into at least two different light paths. At least one of the light paths acts as a propagating light path and transmits the light beam out of the lighting system. At least one other light path acts as a non-propagating light path and prevents the light beam from being transmitted out the system. The illumination exposure control systems provide high speed of exposure actuation and precision control of exposure duration and frequency or exposure sequences.
Abstract:
Methods, systems, devices and the like for measuring, encoding and displaying of object color for digital imaging, to control the apparent color of an item under different lighting or display conditions. The present invention helps provide accurate color for such items, both on the internet and in other situations, and can, if desired, determine whether a display screen is accurately displaying the color and also correct the image on the screen if it is not accurate. Also, probes suitable for taking accurate measurements of the intrinsic color characteristics, or intrinsic wavelength-dependent response, of an object, and software or databases that provide information for a variety of lighting situations and light sources.
Abstract:
Lighting systems comprising a spectrum former upstream from a reflective pixelated spatial light modulator (reflective SLM), the SLM reflecting substantially all of the light in the spectrum into at least two different light paths, that do not reflect back to the light source or the spectrum former. At least one of the light paths acts as a projection light path and transmits desired light out of the lighting system. The lighting systems provide virtually any desired color(s) and intensity(s) of light, and avoid overheating problems by deflecting unwanted light and other electromagnetic radiation out of the system or to a heat management syste. The systems can be part of another system, a luminaire, or any other suitable light source. The systems can provide virtually any desired light, from the light seen at the break of morning to specialized light for treating cancer or psoriasis, and may change color and intensity at speeds that are perceptually instantaneous.
Abstract:
Lighting systems comprising a spectrum former upstream from a reflective pixelated spatial light modulator (reflective SLM), the SLM reflecting substantially all of the light in the spectrum into at least two different light paths, that do not reflect back to the light source or the spectrum former. At least one of the light paths acts as a projection light path and transmits desired light out of the lighting system. The lighting systems provide virtually any desired color(s) and intensity(s) of light, and avoid overheating problems by deflecting unwanted light and other electromagnetic radiation out of the system or to a heat management syste. The systems can be part of another system, a luminaire, or any other suitable light source. The systems can provide virtually any desired light, from the light seen at the break of morning to specialized light for treating cancer or psoriasis, and may change color and intensity at speeds that are perceptually instantaneous.
Abstract:
Color endoscopes, light sources and endoscopy systems, etc., that have good dynamic range and/or resolution while reducing the size and cost of the endoscopes. The endoscopes achieve this, in part, by using a black and white (grayscale or monochromatic) sensor at the tip of the endoscope instead of a color sensor. The endoscope uses a light system that precisely and specifically illuminates the tissue one color at time, captures the image in grayscale, then uses a computer to associate the image with the color. Certain aspects of the invention apply to imaging systems in addition to endoscopes.
Abstract:
The apparatus and methods herein provide light sources and spectral measurement systems that can improve the quality of images and the ability of users to distinguish desired features when making spectroscopy measurements by providing methods and apparatus that can improve the dynamic range of data from spectral measurement systems.