Abstract:
Provided is a packaging material for a power storage device, the packaging material including a structure in which at least a substrate protective layer, a substrate layer, an adhesive layer, a metal foil layer, a sealant adhesive layer, and a sealant layer are laminated in this order, wherein the substrate protective layer is a cured product of a raw material containing a polyester resin or an acrylic resin, and a curing agent; the polyester resin or the acrylic resin has reactive groups reactive with the curing agent at a terminal position and/or in a side chain; the curing agent contains an isocyanate other than an alicyclic isocyanate, and an alicyclic isocyanate; and the ratio ([a]/[b]) of the weight of the isocyanate other than an alicyclic isocyanate [a] to the weight of the alicyclic isocyanate [b] is 99/1 to 80/20.
Abstract:
A transparent conductive gas barrier laminate according to the present disclosure includes a transparent gas barrier film and a transparent conductive layer in this order from outside toward inside. In the laminate, the transparent gas barrier film has a b* value of more than 0 in a L*a*b* color system, and the transparent conductive layer contains a conductive polymer and has a b* value of less than 0 in the L*a*b* color system.
Abstract:
A lithium battery packaging material of the present invention includes a laminate in which a substrate layer, a first adhesive layer, a metal foil layer, a corrosion prevention treatment layer, a second adhesive layer, and a sealant layer are laminated in this order. In the packaging material, the corrosion prevention treatment layer contains an rare-earth oxide, and 1 to 100 parts by mass of phosphoric acid or phosphate relative to 100 parts by mass of the rare-earth oxide, the second adhesive layer includes an adhesive composition containing an acid modified polyolefin resin and a polyfunctional isocyanate compound, and, in an infrared absorption spectrum of the second adhesive layer, a ratio (Y/X) between absorption (X) derived from C-H bending vibration of CH 3 and absorption (Y) derived from N-H bending vibration of a biuret bond is 0.3 or less.
Abstract:
A lithium battery packaging material of the present invention includes a laminate in which a substrate layer, a first adhesive layer, a metal foil layer, a corrosion prevention treatment layer, a second adhesive layer, and a sealant layer are laminated in this order. In the packaging material, the corrosion prevention treatment layer contains an rare-earth oxide, and 1 to 100 parts by mass of phosphoric acid or phosphate relative to 100 parts by mass of the rare-earth oxide, the second adhesive layer includes an adhesive composition containing an acid modified polyolefin resin and a polyfunctional isocyanate compound, and, in an infrared absorption spectrum of the second adhesive layer, a ratio (Y/X) between absorption (X) derived from C-H bending vibration of CH 3 and absorption (Y) derived from N-H bending vibration of a biuret bond is 0.3 or less.
Abstract:
A transparent conductive gas barrier laminate according to the present disclosure includes a first transparent gas barrier film; a transparent adhesive layer made of one adhesive selected from the group consisting of an acrylic adhesive, a silicone adhesive, a polyolefin adhesive, a urethane adhesive, and a polyvinyl ether adhesive; a transparent conductive layer made of a conductive organic material or a conductive inorganic material; and a second transparent gas barrier film. The first transparent gas barrier film, the transparent adhesive layer, the transparent conductive layer, and the second transparent gas barrier film are laminated in this order. A method for producing the transparent conductive gas barrier laminate includes bonding together the first transparent gas barrier film and the transparent conductive layer via the transparent adhesive layer.
Abstract:
The present invention relates to a packaging material for a power storage device, the packaging material having a structure in which at least a substrate protective layer, a substrate layer, an adhesive layer, a metal foil layer, a sealant adhesive layer, and a sealant layer are laminated in this order, wherein the substrate protective layer is a cured product of a raw material containing a polyester resin and a polyisocyanate, a ratio [NCO]/[OH] is 5 to 60, where [OH] is the number of moles of hydroxyl groups in the polyester resin, and [NCO] is the number of moles of isocyanate groups in the polyisocyanate, and the polyester resin has a hydroxyl value of 10 to 70 KOHmg/g.
Abstract:
A packaging material for lithium cell of the present invention includes a laminate of a substrate layer, a first adhesive layer, a metal foil layer, an anti-corrosion treatment layer of a single-layer or plural-layer structure, a second adhesive layer and a sealant layer stacked in this order. The anti-corrosion treatment layer is provided on the side of the second adhesive layer and contains a rare earth element oxide, 1 to 100 parts by mass of phosphoric acid or a phosphate salt per 100 parts by mass of the rare earth element oxide, and at least one polymer selected from the group of a cationic polymer and an anionic polymer wherein the at least one polymer is contained at least in the layer contacting with the second adhesive layer and the second adhesive layer contains a compound reactive with the at least one polymer contained in the layer contacting with the second adhesive layer.