摘要:
A surface treatment apparatus 100 includes a diluent gas supplier 1, a fluorine gas supplier 2, a mixer 5 which mixes a diluent gas with a fluorine gas, and a reactor 6 which treats a treatment target by using a mixed gas generated by the mixer 5. A diluent gas supplied from a diluent gas supplier is heated by a heater 8, and the heated diluent gas is mixed with a fluorine gas supplied from a fluorine gas supplier, in the mixer 5. The mixed gas is supplied to the reactor 6. The gas in the reactor 6 is supplied from the reactor 6 to flow paths 219, 220, 221, and 222 by an exhauster 207. The valves 223, 224, 225, and 226 are serially opened, so that the gas in the reactor 6 is supplied to a harm removal apparatus 208 while the gas flow rate is being adjusted by the flow paths 219, 220, 221, and 222.
摘要:
An electrolytic apparatus includes an electrolyzer, a heater, and a blower. The electrolyzer accommodates an electrolytic bath. The heater is provided in the electrolyzer while being electrically insulated from the electrolyzer. Similarly, the blower is provided in the electrolyzer while being electrically insulated from the electrolyzer. The heater is turned on so that a temperature of the electrolyzer rises. The heater is turned off and the blower is turned on so that a temperature of the electrolyzer falls. The heater and the blower are switched between ON and OFF so that the temperature of the electrolyzer is kept constant.
摘要:
Fluorine gas generators are connected with semiconductor manufacturing apparatuses 3a to 3e through a gas supplying system 2 including a storage tank 12 that can store a predetermined quantity of fluorine gas generated in the on-site fluorine gas generators 1a to 1e. When one or more of the on-site fluorine gas generators 1a to 1e are stopped, fluorine gas is supplied to the semiconductor manufacturing apparatuses 3a to 3e from the storage tank 12 storing a predetermined quantity of fluorine gas, so as to keep the operations of the semiconductor manufacturing apparatuses 3a to 3e. Thereby obtained is a semiconductor manufacturing plant in which fluorine gas generated in the fluorine gas generators can be safely and stably supplied to the semiconductor manufacturing apparatuses, and the cost performance is superior.
摘要:
A control device receives an output signal from a liquid level sensor disposed in an anode chamber. This output signal indicates whether the liquid level of the electrolytic bath in the anode chamber is higher than a reference level. When the liquid level of the electrolytic bath in the anode chamber is higher than the reference level, the control device increases, by a prescribe value, the frequency of a compressor driving voltage that is generated in an inverter circuit. This increases the rotational speed of a motor in the compressor, increases the discharge pressure of hydrogen gas being discharged from the compressor, and decreases the pressure inside the cathode chamber. As a result, the liquid level of the electrolytic bath in the cathode chamber rises, and the liquid level of the electrolytic bath in the anode chamber falls below the reference level.
摘要:
A fluorine/fluoride gas generator which has an electrolyte made of mixed molten salt containing hydrogen fluoride in an electrolytic cell including an anode chamber and a cathode chamber, and generates a gas containing fluorine by electrolyzing the electrolyte, includes a raw material supply pipe for supplying an electrolysis raw material, reaching the inside of the electrolyte in the electrolytic cell, a normally-closed valve provided in the middle of the raw material supply pipe, and a bypass pipe provided with a normally-open valve, joining the raw material supply pipe on the downstream side from the normally-closed valve to a gas phase area of the electrolytic cell. Accordingly, the electrolyte is prevented from being suctioned into the raw material supply pipe in the fluorine/fluoride gas generator, and solidification of the electrolyte inside the rawmaterial supply pipe can be prevented.
摘要:
A fluorine gas generation system includes a plurality of fluorine gas supply systems and a controller. Each of the fluorine gas supply systems includes a fluorine gas generation apparatus. Each of the fluorine gas supply systems is connected to a CVD device group. The fluorine gas generation apparatus includes a fluorine gas generator and a buffer tank. An opening/closing valve is inserted through a piping. The other end of the piping is branched into a plurality of pipings. Each of the pipings is connected to CVD devices. Pipings in the adjacent fluorine gas supply systems are connected to each other via a piping. An opening/closing valve is inserted through each of the pipings.