摘要:
We determined the sequence of ATRX and DAXX in 447 cancers from various sites. We found mutations most commonly in pediatric glioblastoma multiformae (GBM) (11.1%), adult GBM (6.5%), oligodendrogliomas (7.7%) and medulloblastomas (1.5%); and showed that Alternative Lengthening of Telomeres (ALT), a telomerase-independent telomere maintenance mechanism found in cancers that have not activated telomerase, perfectly correlated with somatic mutations of either gene. In contrast, neuroblastomas, and adenocarcinomas of the ovary, breast, and pancreas were negative for mutations in ATRX and DAXX. Alterations in ATRX or DAXX define a specific molecular pathway that is closely associated with an alternative telomere maintenance function in human cancers.
摘要:
Oligodendrogliomas are the second most common malignant brain tumor in adults. These tumors often contain a chromosomal abnormality involving a pericentromeric fusion of chromosomes 1 and 19, resulting in losses of the entire short arm of the former and the long arm of the latter. To identify the molecular genetic basis for this alteration, we performed exomic sequencing of seven anaplastic oligodendrogliomas with chromosome 1p and 19q losses. Among other changes, we found that that CIC (homolog of the Drosophila gene capicua) on chromosome 19q was somatically mutated in six of the seven cases and that FUBP1 (far upstream element (FUSE) binding protein) on chromosome 1p was somatically mutated in two of the seven cases. Examination of 27 additional oligodendrogliomas revealed 12 and 3 more tumors with mutations of CIC and FUBP1, respectively, 58% of which were predicted to result in truncations of the encoded proteins. These results suggest a critical role for these genes in the biology and pathology of oligodendrocytes.
摘要:
Many areas of biomedical research depend on the analysis of uncommon variations in individual genes or transcripts. Here we describe a method that can quantify such variation at a scale and ease heretofore unattainable. Each DNA molecule in a collection of such molecules is converted into a single particle to which thousands of copies of DNA identical in sequence to the original are bound. This population of beads then corresponds to a one-to-one representation of the starting DNA molecules. Variation within the original population of DNA molecules can then be simply assessed by counting fluorescently-labeled particles via flow cytometry. Millions of individual DNA molecules can be assessed in this fashion with standard laboratory equipment. Moreover, specific variants can be isolated by flow sorting and employed for further experimentation. This approach can be used for the identification and quantification of rare mutations as well as to study variations in gene sequences or transcripts in specific populations or tissues.
摘要:
Methods that rapidly, sensitively, and specifically detect mutations in IDH1/2 and the TERT promoter employ amplification of particular portions of the genes that experience frequent and exquisitely localized mutations. The ability to distinguish between sequences that differ only by one nucleotide and which may be present in very low ratios is essential for such an assay.
摘要:
Described herein are compositions and methods for generating oxidoreductases for enantioselective reactions. Described herein are compositions and methods for generating neomorphic (R)-2-hydroxyacid dehydrogenases capable of enzymatically converting a 1-carboxy-2-ketoacid to a 1-carboxy-(R)-2-hydroxyacid, or the reverse reaction. Illustrative examples include (a) (R)-2-hydroxyadipate dehydrogenase and uses thereof for converting 2-oxoadipate to (R)-2-hydroxyadipate, or the reverse reaction; and (b) (R)-2-hydroxyglutarate dehydrogenase and uses thereof for converting 2-oxoglutarate to (R)-2-hydroxyglutarate, or the reverse reaction. Also described herein are compositions and methods for generating non-natural microbial organisms to enzymatically convert 2-oxoadipate to (E)-2-hexenedioate or adipate, or to enzymatically convert 2-oxoglutarate to (E)-2-pentenedioate or glutarate, or the respective reverse reactions.