摘要:
Methods of making a semiconductor device such as a lateral junction field effect transistor (JFET) are described. The methods are self-aligned and involve selective epitaxial growth using a regrowth mask material to form the gate or the source/drain regions of the device. The methods can eliminate the need for ion implantation. The device can be made from a wide band-gap semiconductor material such as SiC. The regrowth mask material can be TaC. The devices can be used in harsh environments including applications involving exposure to radiation and/or high temperatures.
摘要:
A method of making a semi-insulating epitaxial layer includes implanting a substrate or a first epitaxial layer formed on the substrate with boron ions to form a boron implanted region on a surface of the substrate or on a surface of the first epitaxial layer, and growing a second epitaxial layer on the boron implanted region of the substrate or on the boron implanted region of the first epitaxial layer to form a semi-insulating epitaxial layer.
摘要:
A wide bandgap semiconductor device with surge current protection and a method of making the device are described. The device comprises a low doped n-type region formed by plasma etching through the first epitaxial layer grown on a heavily doped n-type substrate and a plurality of heavily doped p-type regions formed by plasma etching through the second epitaxial layer grown on the first epitaxial layer. Ohmic contacts are formed on p-type regions and on the backside of the n-type substrate. Schottky contacts are formed on the top surface of the n-type region. At normal operating conditions, the current in the device flows through the Schottky contacts. The device, however, is capable of withstanding extremely high current densities due to conductivity modulation caused by minority carrier injection from p-type regions.
摘要:
Wide bandgap semiconductor devices including normally-off VJFET integrated power switches are described. The power switches can be implemented monolithically or hybridly, and may be integrated with a control circuit built in a single-or multi-chip wide bandgap power semiconductor module. The devices can be used in high-power, temperature -tolerant and radiation-resistant electronics components. Methods of making the devices are also described.
摘要:
A method for rendering a half-bridge circuit containing normally on switches such as junction field effect transistors (JFETs) inherently safe from uncontrolled current flow is described. The switches can be made from silicon carbide or from silicon. The methods described herein allow for the use of better performing normally on switches in place of normally off switches in integrated power modules thereby improving the efficiency, size, weight, and cost of the integrated power modules. As described herein, a power supply can be added to the gate driver circuitry. The power supply can be self starting and self oscillating while being capable of deriving all of its source energy from the terminals supplying electrical potential to the normally on switch through the gate driver. The terminal characteristics of the normally on switch can then be coordinated to the input-to-output characteristics of the power supply.
摘要:
A switching element combining a self-aligned, vertical junction field effect transistor with etched-implanted gate and an integrated antiparallel Schottky barrier diode is described. The anode of the diode is connected to the source of the transistor at the device level in order to reduce losses due to stray inductances. The SiC surface in the SBD anode region is conditioned through dry etching to achieve a low Schottky barrier height so as to reduce power losses associated with the turn on voltage of the SBD.
摘要:
A switching element combining a self-aligned, vertical junction field effect transistor with etched-implanted gate and an integrated antiparallel Schottky barrier diode is described. The anode of the diode is connected to the source of the transistor at the device level in order to reduce losses due to stray inductances. The SiC surface in the SBD anode region is conditioned through dry etching to achieve a low Schottky barrier height so as to reduce power losses associated with the turn on voltage of the SBD.
摘要:
A junction field effect transistor is described. The transistor is made from a wide bandgap semiconductor material. The junction field effect transistor comprises source, channel, drift, and drain semiconductor layers, as well as p-type implanted or Schottky gate regions. The source, channel, drift, and drain layers can be epitaxially grown. The ohmic contacts to the source, gate, and drain regions, can be formed on the same side of the wafer. The devices can have different threshold voltages depending on the vertical channel width and can be implemented for both depletion and enhanced modes of operation for the same channel doping. The devices can be used for digital, analog, and monolithic microwave integrated circuits. Methods for making the transistors and integrated circuits com rising the devices are also described.
摘要:
Semiconductor devices are described wherein current flow in the device is confined between the rectifying junctions (e.g., p-n junctions or metal-semiconductor junctions). The device provides non-punch-through behavior and enhanced current conduction capability. The devices can be power semiconductor devices as such as Junction Field-Effect Transistors (VJFETs), Static Induction Transistors (SITs), Junction Field Effect Thyristors, or JFET current limiters. The devices can be made in wide bandgap semiconductors such as silicon carbide (SiC). According to some embodiments, the device can be a normally-off SiC vertical junction field effect transistor. Methods of making the devices and circuits comprising the devices are also described.
摘要:
An optically active material is used to create power devices and circuits having significant performance advantages over conventional methods for affecting optical control of power electronics devices and circuits. A silicon-carbide optically active material is formed by compensating shallow donors with the boron related D-center. The resulting material can be n-type or p-type but it is distinguished from other materials by the ability to induce persistent photoconductivity in it when illuminated by electromagnetic radiation with a photon energy in excess of the threshold energy required to photoexcite electrons from the D-center to allowed states close to the conduction band edge, which varies from polytype to polytype.