Abstract:
A composite material comprising a porous structure, wherein a poly(propylenimine) (PPI) sorbent is present in a plurality of pores of the porous structure, where the PPI is physically impregnated in the internal volume of the porous structure and not covalently bonded to the internal surface of the porous structure, and wherein the PPI is a branched PPI, and method of capturing CO2, including a step of exposing a gas mixture to a porous structure are disclosed.
Abstract:
The organic-inorganic composite of the present invention includes an organic compound having a carbonyl group, an inorganic compound containing a metal component, and a silver component. The ratio of the number of metal atoms in the inorganic compound to the number of carbon atoms in the organic compound is from 0.04 to 1.60, and the ratio of the number of silver atoms in the silver component to the number of carbon atoms in the organic compound is from 0.07 to 0.55. The organic-inorganic composite may include, for example, an inorganic compound having a metal matrix structure containing a metal M and oxygen, an organic compound having a carbonyl group, and silver ions. The carbonyl group is bonded to a side chain R 1 of the organic compound and has an end group R 2 .
Abstract:
The present invention provides nanofiltration membranes with reduced chemical reactivity that can be utilized in manufacturing processes where reactive feedstocks and/or products are utilized or produced. Methods of making and using the membranes are also provided.
Abstract:
A functional polymer membrane, prepared by curing a composition comprising a polymerizable compound (A) represented by Formula (1) and a monofunctional polymerizable compound (B):
wherein R 1 represents a hydrogen atom or a methyl group; Q represents a polyol residue formed by removing m2 hydrogen atoms from hydroxyl groups of a trivalent to hexavalent polyol; L represents a divalent linking group; m1 represents 0 or 1; m2 represents an integer of from 3 to 6.
Abstract:
Solvent and acid stable ultrafiltration and nanofiltration membranes including a non-cross-linked base polymer having reactive pendant moieties, the base polymer being modified by forming a cross-linked skin onto a surface thereof, the skin being formed by a cross-linking reaction of reactive pendant moieties on the surface with an oligomer or another polymer as well as methods of manufacture and use thereof, including, inter alia separating metal ions from liquid process streams.
Abstract:
A composition of enzyme, polymer, and crosslinker forms a network of covalently bound macromolecules. The covalently immobilized enzyme preparation has enzymatic activity, and retains stable activity when dried and stored at ambient conditions. Methods for preparing an immobilized enzyme and methods for using the enzyme are disclosed.
Abstract:
The present invention provides a composite material comprising a support member that has a plurality of pores extending therethrough, a first polymer which durably coats the pores of the support member, the first polymer layer having both hydrophobic and hydrophilic properties, and a second polymer layer disposed on the surface of the first polymer layer, the second polymer being more hydrophilic than the first polymer layer. The present invention also provides a process for preparing the composite material, and its use as a separation medium.
Abstract:
The invention is directed to a filtration membrane that is capable for the retention of endotoxines and cytokine inducing substances (CIS) including bacterial DNA and/or DNA fragments from fluid and/or liquid media. The invention is further directed to a method of manufacturing such filtration membranes in a high quality and in an effective and time saving procedure, and to the use of such membranes for the retention of substances from fluids or liquids. The filtration membrane of the invention consists of a polymer blend comprising at least one hydrophobic polymer containing sulfur in its back bone, at least one hydrophilic, uncharged homo-polymer of polyvinylpyrrolidone and at least one polymer containing cationic charges. The method of manufacturing such a filtration membrane comprises dissolving at least one hydrophobic polymer containing sulfur in its back bone and at least one hydrophilic, uncharged polyvinylpyrrolidone and at least one polymer containing cationic charges in at least one solvent to form a polymer solution, subjecting the formed polymer solution to a diffusion-induced phase separation to prepare a filtration membrane, washing and subsequently drying of the filtration membrane.