Abstract:
Provided are a CO 2 gas separation membrane, a method for manufacturing the same, and a carbon dioxide gas separation membrane module including the same, the CO 2 gas separation membrane including: a first layer (A) containing at least one alkali metal compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate and an alkali metal hydroxide, and a first resin in which a polymer having a carboxyl group has been crosslinked; a second layer (B) containing at least one of the alkali metal compounds, and a second resin having a structural unit derived from a vinyl ester of a fatty acid; and a hydrophobic porous membrane (C).
Abstract:
Provided is a technique for fabricating a novel thin membrane with a starting material such as a biocompatible compound that is not easily processible into a membrane, particularly a technique for fabricating a novel thin membrane of a composition that is gradually polymerized from a membrane surface into the membrane in the cross sectional direction of the membrane, and having, for example, different structures on the front and back of the membrane. The technique includes the steps of preparing a solution of a starting material compound; forming a thin membrane of the solution on a base material surface; and forming the organic polymer thin membrane through a polymerization reaction caused by irradiating the exposed surface of the thin membrane with a plasma or an electron beam.
Abstract:
A polyolefin microporous membrane suitable for providing a porous layer exhibiting less variation in thickness and having a width not less than 100 mm, wherein a variation range of an F25 value in the width direction is not greater than 1 MPa, wherein the F25 value is a value obtained by dividing a load at 25% elongation of a sample piece using a tensile testing machine by a cross-sectional area of the sample piece.
Abstract:
A membrane includes a porous base membrane and a hydrophilic coating. The coating comprises a hydrophilic additive and a hydrophilic polymer derivatized with an electron beam reactive group adapted to form a radical under high energy irradiation. In some embodiments, the membrane comprises a fluoropolymer. Also disclosed are processes for forming the membrane.
Abstract:
A blood purification membrane capable of adsorbing creatinine which is a uremic toxin in the blood and purifying the blood, the blood purification membrane including fibers and particles adhered to the aforementioned fibers, wherein the aforementioned fibers are composed of a polymer insoluble in water, the aforementioned particles contain SiO 2 and Al 2 O 3 , and pores capable of incorporating at least a portion of the aforementioned uremic toxin are provided in the aforementioned particles.
Abstract translation:1.一种血液净化膜,其能够吸附作为血液中的尿毒症毒素的肌酸酐并净化血液,所述血液净化膜含有附着在所述纤维上的纤维和颗粒,所述纤维由不溶于水的聚合物构成,上述 颗粒含有SiO 2和Al 2 O 3,并且在上述颗粒中提供了能够结合至少一部分上述尿毒症毒素的孔。
Abstract:
Disclosed is a hollow fiber membrane module including a case and a hollow fiber membrane built in the case, wherein the hollow fiber membrane contains a polysulfone-based polymer and a hydrophilic polymer, and satisfies the following (A) and (B), and an amount of an eluted substance contained in a liquid obtained by circulating ultrapure water heated at 37°C through a passage of an inner surface side of the hollow fiber membrane for 4 hours at 200 mL/min is 1.0 mg/m 2 or less: (A) an insoluble component accounts for less than 3% by mass of the total mass of the hollow fiber membrane when the hollow fiber membrane is dissolved in N,N-dimethylacetamide; and (B) a flexible layer exists on a surface of a functional layer in a wet state and the flexible layer has a thickness of 7 nm or more. The present invention provides a hollow fiber membrane module including a hollow fiber membrane containing a polysulfone-based polymer and a hydrophilic polymer built therein, which elutes little eluted substance and exhibits high biocompatibility, while change in performance due to crosslinking of the hydrophilic polymer is suppressed.
Abstract:
Articles are described including a first microfiltration membrane layer having a first major surface and a second major surface disposed opposite the first major surface, and a first silica layer directly attached to the first major surface of the first microfiltration membrane layer. The first silica layer includes a polymeric binder and acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. A method of making an article is also described, including providing a first microfiltration membrane layer having a first major surface and a second major surface disposed opposite the first major surface, and forming a first silica layer on the first major surface.
Abstract:
The present disclosure relates to semipermeable membranes which are suitable for blood purification, e.g. by hemodialysis, which have an increased ability to remove larger molecules while at the same time effectively retaining albumin. The membranes are characterized by a molecular retention onset (MWRO) of between 9.0 kD and 14.5 kD and a molecular weight cut-off (MWCO) of between 55 kD and 130 kD as determined by dextran sieving curves and can be prepared by industrially feasible processes excluding a treatment with salt before drying. The invention therefore also relates to a process for the production of the membranes and to their use in medical applications.