Abstract:
Graphene sheets having a plurality of holes in their basal planes are described herein. Methods for making the graphene sheets can involve contacting graphene sheets with an activated gas that has contacted a helium or argon atmospheric pressure plasma. The size and/or number of holes introduced can be altered by changing the contact time, the stand-off distance, the activated gas concentration, and/or the plasma power. Polymer composites containing the perforated graphene sheets are also described.
Abstract:
A method of manufacturing a graphene monolayer on insulating substrates from CVD graphene synthesis, wherein a metal foil (3) catalyst with a top graphene layer (1) and a bottom graphene layer (2) is obtained, by comprising the steps of: - Applying an adhesive tape (4) to the bottom graphene layer (2) deposited at the bottom of the metal foil (3) in the CVD graphene synthesis by a roller, - detaching the adhesive tape (4) and the bottom graphene layer (2) from the copper foil (3) via the application of heat, from 1°C up to 5°C higher than the release temperature of the adhesive tape (4) so that the adhesive layer (4) with the bottom graphene layer (2) can be removed, obtaining a metal foil (3) with a top graphene layer (2) sample, and - transfer the top graphene layer (1) onto a substrate (6) via a sacrificial protective layer (5).
Abstract:
This present invention relates to a method of preparing graphene-based film, said method comprising: providing a first graphene-based film comprising sheets of graphene, graphene oxide, partially reduced graphene oxide, reduced graphene oxide, or a combination of two or more thereof, that are (i) arranged relative to each other in a substantially planar manner so as to form a layered structure, and (ii) at least partially separated by a liquid medium; exchanging said liquid medium with a packing density adjustment medium that comprises at least two components, wherein one of said components has a volatility greater than the other component; and removing at least some of the more volatile component from the first graphene-based film to produce a graphene-based film that has a different packing density of the graphene-based sheets relative to that of the first graphene-based film.
Abstract:
This is generally a method of producing graphene-containing suspensions of flakes of high quality graphene/graphite oxides and method of producing graphene/graphite oxides. Both the exfoliating graphite into flakes and oxidizing the graphite flakes and the preparation and suspension of the flakes can be done with high volume production and at a low cost.
Abstract:
The present invention relates to graphene-based foam, the graphene-based foam having a structure defined by a three-dimensional network of interconnected and ordered open cells, the open cells being defined by cell walls, the cell walls (i) being formed of graphene sheets, partially reduced graphene oxide sheets, reduced graphene oxide sheets, or a combination thereof, and (ii) having a thickness defined by the thickness of a plurality of graphene sheets, partially reduced graphene oxide sheets, reduced graphene oxide sheets, or a combination thereof.
Abstract:
The present invention relates to hydrogen surface-treated graphene, a formation method thereof, and an electronic device including the same. The graphene according to one exemplary embodiment of the present invention can be useful in preparing hydrogen surface-treated graphene having a band gap using simple methods through indirect hydrogen plasma treatment. Also, the graphene according to one exemplary embodiment of the present invention can be useful in forming two regions having different band gaps through the indirect hydrogen plasma treatment, and thus can be useful in reducing the processing time and the processing cost since the graphene is directly applicable to electronic devices such as transistors, and touch panels.
Abstract:
The present invention relates to the novel material fluorographene (FG), methods of making fluorographene, and its applications in electronics and related fields. The fluorographene also finds use in improving the properties of composite materials by incorporating the fluorographene of the invention with one or more materials such as fluoropolymers (FP) and the like. Conventionally, FP inter-chain interactions are very weak but spread over the area of FG, FG is able to act as a very effective and compatible reinforcement.
Abstract:
An adduct consists of derivatives of serinol pyrrole and of carbon allotropes in which the carbon is sp2 hybridized, such as carbon nanotubes, graham or nano-graphites or carbon black, in order to improve the chemical-physical properties of the allotropes increasing above all their dispersibility and stability in liquid media and in polymer matrices, and a process for preparation of the adduct.
Abstract:
Graphene is chemically modified by a process resulting in the introduction of functional groups located only at an edge of the graphene plane. The functionalised graphene finds uses in numerous applications and further chemical synthesis, including a process for coupling an organic or inorganic moiety to the graphene plane via the edge-located functional group. The disclosed products and processes provide highly flexible platforms for the integration of graphene into a variety of applications.
Abstract:
A novel active material comprising graphene-fibrous carbon composite and a method of making it is provided. The composite is highly uniform and conductive. The composite comprises graphene or nanoporous graphene and fibrous carbon, preferably vapor grown carbon fibers (VGCF) and optionally a lithiummetalphosphate (LMP), preferably lithiumferrophosphate or lithiummanganesephosphate.