Abstract:
Provided is a solid-supported ruthenium complex represented by general formula (1), (2) or (3). Further provided are: a method for manufacturing a reduction product by reducing an organic compound in the presence of the solid-supported ruthenium complex and a hydrogen donor; a method for manufacturing an optically active alcohol, characterized by reducing a carbonyl group in a carbonyl compound in the presence of the solid-supported ruthenium complex and a hydrogen donor; and a method for manufacturing an optically active amine, characterized by reducing an imino group of an imine compound in the presence of the solid-supported ruthenium complex and a hydrogen donor.
Abstract:
The invention concerns a method of nitrosation of a phenolic compound substituted by an electro-attracting group.The invention also concerns a method of nitration of a phenoic compound substituted by an electro-attracting group. The nitrosation method is characterised in that it consists in effecting the nitrosatio n of the said compound in presence of sulphuric acid; the concentration of the sulphuric acid being at least 60 % by weight, then optionally in effecting the separation of the resulting nitrosated compound. The invention also concerns the oxidation of the resulting p-nitrosated phenolic compound for obtaining the corresponding nitrated compound.
Abstract:
Provided is a solid-supported ruthenium complex represented by general formula (1), (2) or (3). Further provided are: a method for manufacturing a reduction product by reducing an organic compound in the presence of the solid-supported ruthenium complex and a hydrogen donor; a method for manufacturing an optically active alcohol, characterized by reducing a carbonyl group in a carbonyl compound in the presence of the solid-supported ruthenium complex and a hydrogen donor; and a method for manufacturing an optically active amine, characterized by reducing an imino group of an imine compound in the presence of the solid-supported ruthenium complex and a hydrogen donor.
Abstract:
Method of nitrosation of an aromatic organic compound, involving continuous preparation of dinitrogen trioxide in a microreactor, and continuous reaction of dinitrogen trioxide with the aromatic organic compound.
Abstract:
Method of nitrosation of phenol, involving continuous preparation of dinitrogen trioxide in a microreactor, and reaction of dinitrogen trioxide with the aromatic organic compound.