摘要:
This invention relates to a method for the conversion of lignocellulosic biomass into ethyl esters of carboxylic acids. Said method consists of treating the biomass material with an oxidizing agent that is incorporated in an solution comprising one or more acids, one or more alcohols and water, and subsequently performing a catalytic reaction at a higher temperature using the same acidic solution into which a larger volume of alcohol is added, in such a way that the catalytic conversion occurs in a medium with a much higher concentration of alcohol, i.e. with a much higher alcohol-to-water wt ratio. Such a method results in relatively high yields of ethyl esters, such as ethyl esters of formic, acetic, and levulinic acids, while producing a low yield of dialkyl ethers, which are unwanted by-products. The concentration of the oxidizing agent in the pre-treatment step is preferably higher than 6.0 wt %. The oxidizing agent is preferably a Fenton or Fenton-type reagent, and most preferably hydrogen peroxide activated by Fe (II), and/or Ti (IV) ions. The alcohol is preferably ethanol, and when ethanol is used, diethyl ether is formed as the unwanted dialkyl ether by-product. Preferably, the biomass material is pelleted before treatment.
摘要:
This invention refers to a microporous crystalline material of zeolitic nature that has, in its calcined state and in the absence of defects in its crystalline matrix manifested by the presence of silanols, the empirical formula x(M1/nXO2):yYO2:gGeO2:(1−g)SiO2 in which M is selected between H+, at least one inorganic cation of charge +n, and a mixture of both, X is at least one chemical element of oxidation state +3, Y is at least one chemical element with oxidation state +4 different from Si, x takes a value between 0 and 0.2, both included, y takes a value between 0 and 0.1, both included, g takes a value between 0 and 0.5, both included that has been denoted ITQ-55, as well as a method for its preparation. This invention also relates to uses of the crystalline material of zeolitic nature for adsorption of fluid components, membrane separation of fluid components, storage of fluid components, and catalysis of various conversion reactions.
摘要:
This invention refers to a microporous crystalline material of zeolitic nature that has, in its calcined state and in the absence of defects in its crystalline matrix manifested by the presence of silanols, the empirical formula x(M1/nXO2):yYO2:gGeO2:(1−g)SiO2 in which M is selected between H+, at least one inorganic cation of charge +n, and a mixture of both, X is at least one chemical element of oxidation state +3, Y is at least one chemical element with oxidation state +4 different from Si, x takes a value between 0 and 0.2, both included, y takes a value between 0 and 0.1, both included, g takes a value between 0 and 0.5, both included that has been denoted ITQ-55, as well as a method for its preparation. This invention also relates to uses of the crystalline material of zeolitic nature for adsorption of fluid components, membrane separation of fluid components, storage of fluid components, and catalysis of various conversion reactions.
摘要:
The present invention provides a Molybdenum or Tungsten chalcogenide nanoobject having: (a) an object size comprised from 0.1 to 500 nm, and (b) from 1 to 99% by weight of molecules of formula (I) with respect to the total weight of the nanoobject, wherein: A is -OH; X is selected from: (CrC2o)alkyl optionally substituted with one or more radicals; a 2 to 20-member heteroalkyi optionally substituted with one or more radicals; and a homopolymer or copolymer comprising a polymeric chain; B is selected from: H, -OH, NH2, (Ci-C4)alkyl, halogen, phenyl substituted with one or more halogen radicals, benzyl substituted with one or more halogen radicals, -C(=O)R3, -C(=O)(R7), -OC(=O)(O)R3, -C(=O)(O ), -C(=O)(O)R3, -OR3, -CH(OR3)(OR4), -C(OR3)(OR4)(R5), -C(OR3)(OR4)(OR5), -C(OR3)(OR4)(OR5)( OR6), -NR1,-NR2R3,, -C(=NR1)(R2), -C(=O)(NR1R2), -Ν(Ο(=Ο)(^)) (C(=O)(R2))(R3), -O(CN), -NC(=O), -ONO2, -CN, -NC, -ON(=O), -NO2, -NO, -C5H4N, -SR1, -SSR1,-S)(R1), - S(R1), -S(=O)(OH), -S(=O)(=O)(OH), -SCN, -NCS, -C(=S)(R1), -PR1R2, -P(=O)(OH)2, -OP(=O)(OH)2, -OP(=O)(OR1)(OR2), -B(OH), -B(OR1)(OR2), and -B(OR1)(R2); provided that when B is -H or (C1-C4) alkyl, then X is a homopolymer, a copolymer, or a 2 to 20-member heteroalkyl optionally substituted with one or more radicals as defined above. The present invention also provides processes for the preparation of the nanoobjects, their use as additive for reducing the friction coefficient of a material, and compositions comprising thereof. A-X-B (I)
摘要:
Subject-matter of the invention is a process for the preparation of a key intermediate in the synthesis of indacaterol. Subject-matter of the invention are also new synthesis intermediates. Formula (I):
摘要:
Methods described herein enable the production of numerous molecular species through decarboxylative cross-coupling via use of photoredox and transition metal catalysts. For example, methods described herein enable the production of numerous molecular species through decarboxylative cross-coupling via use of photoredox and transition metal catalysts. A method described herein, in some embodiments, comprises providing a reaction mixture including a photoredox catalyst, a transition metal catalyst, a coupling partner and a substrate having a carboxyl group. The reaction mixture is irradiated with a radiation source resulting in cross-coupling of the substrate and coupling partner via a mechanism including decarboxylation, wherein the coupling partner is selected from the group consisting of a substituted aromatic compound and a substituted aliphatic compound.
摘要:
Provided is a method for preparing a diol. In the method, a saccharide and hydrogen as raw materials are contacted with a catalyst in water to prepare the diol. The employed catalyst is a composite catalyst comprised of a main catalyst and a cocatalyst, wherein the main catalyst is a water-insoluble acid-resistant alloy; and the cocatalyst is a soluble tungstate and/or soluble tungsten compound. The method uses an acid-resistant, inexpensive and stable alloy needless of a support as a main catalyst, and can guarantee a high yield of the diol in the case where the production cost is relatively low.