Abstract:
The present invention relates to a method for preparing a surgical anti-adhesion barrier film comprising the following steps: a°) a first solution, comprising an oxidized collagen is prepared, b) a polyphosphate compound is added to the solution of a) in a quantity so as to obtain a concentration of polyphosphate ranging from 0.007 to 0.7%, by weight, with respect to the total weight of the solution, c) the pH of the solution obtained in b) is adjusted to about 9 by addition of a base or to about 5.1 by addition of an acid, d) a diluted solution is prepared by adding water to solution of c), e) a first layer of solution obtained in c) is casted on an inert support, f) before complete gelation of the layer obtained in d), a second layer, of diluted solution obtained in d) is applied on top of said first layer and let to gelify, g) the gelified first and second layers are dried to obtain a film. The invention further relates to a film obtainable by such a method and to a surgical implant comprising a prosthetic fabric and such a film.
Abstract:
Provided herein, for example, are microspheres comprising a gelatin or gelatin substitute and a copolymer of a N-tris-hydroxymethyl methylacrylamide monomer unit, a diethylaminoethylacrylamide monomer unit and a N,N-methylene-bis-acrylamide monomer unit. Also provided are methods of producing microspheres comprising a copolymer comprising a gelatin or gelatin substitute and a copolymer of a N-tris-hydroxymethyl methylacrylamide monomer unit, a diethylaminoethylacrylamide monomer unit and a N,N-methylene-bisacrylamide monomer unit. Further provided herein, for example, are compositions comprising the microspheres and methods of using the microspheres and compositions thereof.
Abstract:
The present invention refers to thermoplastic polymer compositions, highly biodegradable, based on polycaprolactone and a proteic hydrolysate material, that are useful for the quick prototyping with 3D printers and for the manufacture of semi-finished products in the form of filaments, pellets and thin films by hot extrusion.
Abstract:
Multilayer thin film devices that include a bioactive agent for elution to the surrounding tissue upon administration to a subject are provided. The multilayer thin film devices are useful as medical devices, such as ocular devices. Also provided are methods and kits for localized delivery of a bioactive agent to a tissue of a subject, and methods of preparing the subject devices. The multilayer thin film medical device includes a first layer, a bioactive agent and a second layer. The first and the second layers may be porous or non-porous. The devices have a furled structure, suitable for administration to a subject.
Abstract:
The invention relates to biocompatible, soft, magneto-active polymers (MAP), the elasto-mechanical properties of which can be adjusted by a magnetic field. The invention further relates to special magnetic field systems for locally controlling the MAP and moving, separating, controlling, and influencing biological cells on the surface of the MAP material.
Abstract:
Described herein is a transparent graphene and polymer based nanocomposite barrier film that provides gas, fluid, and/or vapor resistance. Also described is a barrier film where the graphene may be selected from reduced graphene oxide, graphene oxide, and is also functionalized or crosslinked. Also described is a barrier film where there is crosslinking between the graphene and/or the polymers to provide enhanced water resistance. A barrier device is also described that incorporates the barrier film and further comprises a substrate and a protective coating, encompassing the barrier film. Also described are methods for making the aforementioned barrier films and related devices.
Abstract:
The present invention relates to a method for preparing a surgical anti-adhesion barrier film comprising the following steps: a°) a first solution, comprising an oxidized collagen is prepared, b) a polyphosphate compound is added to the solution of a) in a quantity so as to obtain a concentration of polyphosphate ranging from 0.007 to 0.7%, by weight, with respect to the total weight of the solution, c) the pH of the solution obtained in b) is adjusted to about 9 by addition of a base or to about 5.1 by addition of an acid, d) a diluted solution is prepared by adding water to solution of c), e) a first layer of solution obtained in c) is casted on an inert support, f) before complete gelation of the layer obtained in d), a second layer, of diluted solution obtained in d) is applied on top of said first layer and let to gelify, g) the gelified first and second layers are dried to obtain a film. The invention further relates to a film obtainable by such a method and to a surgical implant comprising a prosthetic fabric and such a film.
Abstract:
Multilayer thin film devices that include a bioactive agent for elution to the surrounding tissue upon administration to a subject are provided. The multilayer thin film devices are useful as medical devices, such as ocular devices. Also provided are methods and kits for localized delivery of a bioactive agent to a tissue of a subject, and methods of preparing the subject devices. The multilayer thin film medical device includes a first layer, a bioactive agent and a second layer. The first and the second layers may be porous or non-porous. The devices have a furled structure, suitable for administration to a subject.