Abstract:
The present invention relates to a composition containing graphene and grafene nanoplatelets durably dispersed in a solvent. Said composition is characterized in that it contains at least 1% by weight, with respect to the total weight of the solvent, of a vinyl aromatic polymer and comprises a mass concentration of graphene and graphene nanoplatelets (GRS) ranging from 0.001% to 10% by weight with respect to the total weight of the solvent. The vinyl aromatic polymer present in the composition is obtained by partial or total polymerization of the relative vinyl aromatic monomer alone or mixed with up to 50% by weight of further copolymerizable monomers. The composition must satisfy the condition that the sum of the possible content of non-reacted monomers and the content of vinyl aromatic polymer formed is equal to at least 10% by weight with respect to the total weight of the solvent.
Abstract:
A polylactic acid resin composition containing a polylactic acid resin, glass fibers having an average aspect ratio (average fiber length/average fiber diameter) of 5 or more, and a metallic pigment, wherein the glass fibers are contained in an amount of from 2 to 35 parts by mass, and the metallic pigment is contained in an amount of from 0.1 to 8 parts by mass, based on 100 parts by mass of the polylactic acid resin. Since the polylactic acid resin composition of the present invention has excellent moldability, and is capable of providing a molded article with high designability, including a transparent surface layer and an inner layer with a lamellar texture in the nashiji patterns, the polylactic acid resin composition can be suitably used in various industrial applications, such as daily sundries, household electric appliance parts, packaging materials for household electric appliance parts, and automobile parts.
Abstract:
The present invention is a membrane wiring board provided with an insulating substrate, and at least one circuit portion provided on the insulating substrate and obtained by coating a circuit layer, formed by an electrically conductive paste containing electrically conductive particles, with an insulating coating layer, wherein the circuit layer contains a resin component having a gel fraction of 90% or more.
Abstract:
The present invention is a polymer composition, containing: 30 to 60 volume % of a melt processable fluoropolymer; and 40 to 70 volume % of boron nitride particles; wherein the boron nitride particles are made from particles (A) and particles (B), the particles (A) are spherical aggregate particles with an average particle diameter of 55 μm to 100 μm, and an aspect ratio of 1 to 2, the particles (B) are particles with an average particle diameter of 8 μm to 55 μm, and the volume ratio of the particles (A) to the total amount of boron nitride is 80 to 99 volume %. The polymer compositions have excellent moldability, insulation properties, heat conductivity, and heat resistance, and are suitable as raw materials for a sufficiently strong molded products, such as thin films.
Abstract:
Disclosed herein is a sliding member that has a coating layer serving as a sliding surface thereof so that even when foreign matter enters between the coating layer and a partner member, smoothness between them is maintained to prevent the occurrence of seizing. When the coating layer has an elastic recovery ratio of less than 60%, foreign matter that has entered between the coating layer and the sliding surface of a partner member is efficiently embedded in the coating layer. When the coating layer is formed of a resin composition, the resin composition contains a binder resin, a solid lubricant, and metal particles having a Young's modulus of 10 GPa or more but 100 GPa or less.
Abstract:
The invention relates to a printed article and a feedstock for printing comprising a matrix forming material, in particular a polymeric material, and a filler material dispersed within the matrix forming material, in which the filler material comprises glass flakes. Glass flakes are characterised as having an aspect ratio of average diameter divided by average thickness greater than or equal to three. Selecting aspect ratio of glass flakes controls an orientation of glass flakes angled relative to a printed layer and formation of a depletion layer in a printed article. Technical effects of angled flakes include better adhesion between successive printed layers in 3D printing and a crack-stopping function. In a preferred embodiment the glass flakes comprise a conductive coating such that a printed article functions as a moisture sensor. Technical effects of a depletion layer include high moisture permeability and so a fast rate of change in electrical resistance due to moisture. A process of manufacturing a feedstock and a process of printing comprising a step of providing glass flakes are also disclosed.
Abstract:
The present invention relates to the use of coating compositions, comprising shaped transition metal, especially silver, particles and a binder, wherein the ratio of pigment to binder is preferably such that the resulting coating shows an angle dependent colour change, for the production of security elements and holograms. When the coating compositions of the present invention are used in coating a hologram the obtained products show a an angle dependent colour change (flip/flop effect), different colours in reflection and transmission, an extremely bright OVD image and extremely strong rainbow effect, high purity and contrast.
Abstract:
A method of producing magnesium hydroxide having a long diameter (width) of not less than 0.5 µm and an aspect ratio of not less than 10, said method comprising the steps of: (A) adding an alkali to and coprecipitating it with a mixed aqueous solution of a water-soluble magnesium salt and a monovalent organic acid or a salt thereof, or (B) adding an alkali aqueous solution to and coprecipitating it with an aqueous solution of a water-soluble magnesium salt and adding a monovalent organic acid or a salt thereof to the resulting product; and (C) hydrothermally treating the obtained slurry at 100°C or higher.