Abstract:
This application relates to a method for differentiating pluripotent stem cells (PSCs) into multi-competent renal precursor cells expressing Six2. These renal precursor cells are able to differentiate into fully functional and fully differentiated podocytes. Moreover this application relates to a method for differentiating human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) into defined renal precursor cells expressing Six2 and podocytes based on linked steps of chemically defined medium inductions.
Abstract:
The present invention relates to brown adipose tissue (BAT) cells derived from adult stern or progenitor cells, derived from adult white fat tissue (WAT), as well as to methods for deriving such cells.
Abstract:
A method for vascular regeneration comprises delivering endothelial cells to a lung scaffold, delivering perivascular cells to the lung scaffold, and providing a multiphase culture program to the scaffold. The multiphase culture program comprises a first phase including delivering an angiogenic medium, e.g., having 40-100 ng/ml of pro-angiogenic factors, and a second phase including delivering a stabilization medium, e.g., having 0.5-2% of serum and 1-20 ng/ml of angiogenic factors.
Abstract:
This invention provides for methods of growing anchorage-dependent cells (e.g. hUTC) in culture medium comprising amino acids, vitamins, salts nucleosides, insulin, transferrin, ethanolamine and sodium selenium, wherein the culture medium is supplemented with serum. The method further comprises addition of a serum-free nutrient solution comprising amino acids, vitamins, salts nucleosides, insulin, transferrin, ethanolamine and sodium selenium. The invention also provides for culture media and serum-free nutrient solutions for growing anchorage-dependent cells.
Abstract:
The present invention relates to the field of pluripotent stem cell differentiation. The present invention provides methods for the differentiation of pluripotent stem cells on a human feeder cell layer. In particular, the present invention provides an improved method for the differentiation of pluripotent stem cells into pancreatic endocrine cells using a human feeder cell layer.
Abstract:
The present invention relates to precursor cells to hepatic stellate cells, compositions comprising same and methods of isolating same. The surface antigenic profile of the precursors is MHC class Ia negative, ICAM-1 + , VCAM-1 + , ²3-integrin + . In addition to expression of these surface markers, the cells also express the intracellular markers desmin, vimentin, smooth muscle ±-actin, nestin, hepatocyte growth factor, stromal derived factor-1± and Hlx homeobox transcriptional factor.
Abstract:
The present invention relates in part to nucleic acids encoding proteins, nucleic acids containing non-canonical nucleotides, therapeutics comprising nucleic acids, methods, kits, and devices for inducing cells to express proteins, methods, kits, and devices for transfecting, gene editing, and reprogramming cells, and cells, organisms, and therapeutics produced using these methods, kits, and devices. Methods for inducing cells to express proteins and for reprogramming and gene-editing cells using RNA are disclosed. Methods for producing cells from patient samples, cells produced using these methods, and therapeutics comprising cells produced using these methods are also disclosed.
Abstract:
Methods of preparing ovarian tissue for primordial follicle growth are presented comprising the steps: providing an ovarian tissue sample comprising cortical tissue and stromal tissue; removing damaged tissue from the ovarian tissue sample where present; removing excess stromal tissue from the ovarian tissue sample where present; and then mechanically stretching the ovarian tissue sample along at least one dimension of the ovarian tissue sample, such that the size of the ovarian tissue sample along the at least one dimension is increased by at least 10%. Methods of growing viable oocyte in vitro, and methods of preparing individual ovarian follicles for growth are also presented.
Abstract:
This disclosure generally concerns the fields of cell biology and molecular biology. In particular the invention concerns the field of stem cell biology and maturation of stem cell-derived cardiomyocytes. Disclosed is a method for improving the maturity of stem-cell derived cardiomyocytes, in particular of the ventricular type, as can be witnessed by, for example, an improved upstroke velocity of the stem-cell derived cardiomyocytes.