Abstract:
Disclosed are methods for isolating polymerase complexes from a mixture of polymerase complex components. The polymerase complexes can comprise a nanopore to provide isolated nanopore sequencing complexes. The methods relate to the positive and negative isolation of the polymerase complexes and/or nanopore sequencing complexes. Also disclosed is a nucleic acid adaptor for isolating active polymerase complexes, polymerase complexes comprising the nucleic acid adaptor, and methods for isolating active polymerase complexes using the nucleic acid adaptor.
Abstract:
Provided herein are mutant polymerase enzymes resistant to inhibitors encountered in Polymerase Chain Reactions (PCR). Also provided are nucleic acids or consrtucts encoding isolated polypeptides having polymerase activity. Also provided are kits useful for PCR containing isolated polypeptides having polymerase activity or isolated nucleic acids encoding such.
Abstract:
Provided is a linker element and a method of using the linker element to construct a sequencing library, wherein the linker element consists of a linker A and a linker B, the linker A is obtained through the complementary pairing of a long nucleic acid strand and a short nucleic acid strand, the 5' end of the long strand has a phosphoric acid modification, and the 3' end of the short strand has an enclosed modification, with enzyme sites in the short strand; and the linker B is a nucleic acid single strand, and the 3' end thereof can be in a complementary pairing with the 5' end of the long strand of the linker A. Using the linker element of the present invention for constructing a sequencing library ensures the linking directionality of the linkers while solving the problems of fragment interlinking, linker self-linking and low linking efficiency, and reducing the purification reaction between steps, shortening the linking time and reducing costs.
Abstract:
A DNA polymerase mutant comprising a Taq DNA polymerase amino acid sequence with a mutation at one or more of the following selected amino acid positions: E189K, E230K, E507K, H28R, L30R, G38R, F73V, H75R, E76A, E76G, E76K, E90K, K206R, E315K, A348V, L351F, A439T, D452N, G504S, E507A, D551N, L552R, 1553V, D578N, H676R, Q680R, D732G, E734G, E734K, F749V; wherein the polymerase mutant exhibits relative to wild-type DNA polymerase increased polymerase speed, increased affinity to DNA substrate and/or increased resistance to a DNA polymerase inhibitor; and wherein, when the mutation is E507K in combination with two or more further mutations or the mutation is Q680R in combination with four or more further mutations, at least one of the further mutations is at one of the selected amino acid positions; and when the mutation is 1553V, this is not in combination with D551S.
Abstract:
Presented herein are polymerase enzymes for improved incorporation of nucleotide analogues, in particular nucleotides which are modified at the 3′ sugar hydroxyl, as well as methods and kits using the same.
Abstract:
The present disclosure relates to compositions and methods based on a fast, efficient chemical reaction for conjugating a pore-forming protein, such as α-hemolysin, to a biomolecule, such as antibodies, receptors, and enzymes, such as DNA polymerase, and the use of such pore-forming protein conjugates in nanopore devices and methods.