摘要:
The present invention provides an ignition apparatus having a configuration in which a dielectric constant control means controls dielectric constant of mixture in a combustion/reaction field so as to allow resonance frequency of the mixture in the combustion/reaction field to resonate with frequency of the microwave radiated from a microwave radiation means. As a result, it is possible to efficiently increase temperature of the mixture when the microwave is radiated from the microwave radiation means.
摘要:
A controller for an internal combustion engine includes a crank angle detector and an ECU. The ECU is configured to: (a) calculate a mass fraction burned; (b) acquire the crank angle, which is detected by the crank angle detector when the mass fraction burned reaches a predetermined mass fraction burned, as a specified crank angle; and (c) control at least one of an amount of fuel injected, an amount of intake air, or ignition energy on the basis of a first difference. The first difference is a difference between a first parameter and a second parameter. The first parameter is a crank angle period from an ignition time to the specified crank angle or a correlation value of the crank angle period. The second parameter is a target value of the crank angle period or a target value of the correlation value.
摘要:
In a compression ignition internal combustion engine 20 that generates electromagnetic wave plasma by emitting electromagnetic waves to a combustion chamber 21 during a period of a preceding injection, a condition of combustion of fuel from a main injection is stably optimized in response to a change in operating condition of an internal combustion engine main body 22. A control device 10 for internal combustion engine controls a fuel injection device 24 to perform, before a main injection, a preceding injection less in injection quantity than the main injection, while controlling a plasma generation device 30 to generate electromagnetic plasma by emitting electromagnetic waves to the combustion chamber 21 during the period of the preceding injection. The control device 10 controls a condition of heat production due to combustion of fuel from the main injection by controlling the amount of energy of the electromagnetic waves emitted to the combustion chamber 21 during the period of the preceding injection according to the operating condition of the internal combustion engine main body 22.
摘要:
Provided is an engine control device which can suppress a shortage of output terminals of the control unit and an increase of costs even in a multiple-cylinder internal combustion engine equipped with ignition energy supply units of two systems. An engine control device controls a multiple-cylinder engine in which ignition energy supply units of two systems are provided for every cylinder. A signal is transmitted through a common signal line to a plurality of ignition energy supply units of one system among the ignition energy supply units of the two systems to control the ignition energy supply units of the one system.
摘要:
An ignition device is provided, which can boost an electromagnetic wave supplied by a resonance structure, and cause a discharge by enhancing a potential difference between a discharge electrode and a ground electrode, and even though such a structure of the ignition device, a downsize and a thickness reduction, specifically, the thickness reduction can be achieved. On a main surface of a rectangular insulting substrate (2), an input electrode (3), a coupling electrode (4), a discharge electrode (6), and a ground electrode (7), are provided. The input electrode (3) is connected to an outside terminal on one shorter side. The coupling electrode (4) is capacity-coupled with the input electrode (3). The discharge electrode (6) is connected to the coupling electrode (4) on the other shorter side through a coupling line (5). The ground electrode (7) is, on both longer sides of the main surface of the rectangular insulating substrate (2), capacity-coupled with the coupling electrode (4) and capacity-coupled with the coupling line (5), and extended to the other shorter side. A resonance circuit includes a capacitor constituted by the capacity coupling and an inductor constituted by the coupling line (5). Thereby, the electromagnetic wave supplied from the outside terminal into the input electrode is resonated, a potential difference between the discharge electrode (6) and the ground electrode (7) is enhanced, and then, a discharge is caused.
摘要:
An ignition unit improves an air-fuel-ratio, i.e., good mileage and lean burn without changing a gasoline engine structure significantly. The ignition unit comprises a discharge device including a booster and a discharger provided at an output side of the booster, the booster having a resonance structure configured to boost the electromagnetic wave inputted from the electromagnetic wave oscillator so as to cause a discharge from the discharger, and an electromagnetic wave emitter electrically connected to the electromagnetic wave oscillator and configured to emit the electromagnetic wave inputted from the electromagnetic wave oscillator. Moreover, the ignition unit further includes a housing part including a first hole into which the discharge device is inserted and a second hole into which the electromagnetic wave emitter is inserted such that the housing part houses therein both the discharge device and the electromagnetic wave emitter, and the housing part can be inserted into a single hole of a cylinder head of an internal combustion engine.
摘要:
A compression-ignition type internal combustion engine that burns a gaseous fuel, improves an ignition performance not only at a center part of the combustion chamber but also at an outer edge part. The compression-ignition engine comprises an electromagnetic wave generator configured to generate an electromagnetic wave, a controller configured to control the electromagnetic wave generator, and a plasma generator comprising a boosting circuit that constitutes a resonator configured to boost the electromagnetic wave, a first electrode configured to receive an output from the boosting circuit, and a second electrode provided to a vicinity of the first electrode, and the plasma generator is configured such that the first electrode is extruded and exposed toward a combustion chamber of the internal combustion engine, and a plurality of plasma generators are provided.
摘要:
A small-size injector having a built-in ignition device which can surely inject fuel and ignite the fuel with low electric power by the ignition device with a simple configuration is provided. The injector comprises a fuel injecting device 2 having a fuel injecting port 20 that injects the fuel, an ignition device 3 configured to ignite the injected fuel, and a casing 10 inside housing therein the fuel injecting device 2 and the ignition device 3 together. The ignition device 3 is constituted of a plasma generator 3 which integrally comprises a booster 5 having a resonation structure capacity-coupled with an electromagnetic wave oscillator MW configured to oscillate an electromagnetic wave, and a discharger 6 configured to cause a discharge of a high voltage generated by the booster 5.
摘要:
The ignition system (10) of an engine (particularly for a UAV) has a primary (10a), and a secondary (10b) ignition system to provide redundancy for ‘get you home’ capability should the primary ignition system fail. The secondary ignition provides a lower energy or shorter duration spark than the higher energy or longer duration sparking of the primary ignition system, and is retarded relative to primary sparking. Timing of the secondary sparking can be advanced in the event of primary sparking failure. Fuelling strategy can be shifted from a leaner stratified charge to a richer homogenous charge when relying just on the secondary ignition system for ignition. The secondary ignition system can be of a lower spark energy and/or duration than the primary ignition system, avoiding the cost, complexity and weight of replicating the primary ignition system, and to improve packaging within the engine housing, particularly within the limited payload and space limits of a UAV.
摘要:
A controller for an internal combustion engine includes a crank angle detector and an ECU. The ECU is configured to: (a) calculate a mass fraction burned; (b) acquire the crank angle, which is detected by the crank angle detector when the mass fraction burned reaches a predetermined mass fraction burned, as a specified crank angle; and (c) control at least one of an amount of fuel injected, an amount of intake air, or ignition energy on the basis of a first difference. The first difference is a difference between a first parameter and a second parameter. The first parameter is a crank angle period from an ignition time to the specified crank angle or a correlation value of the crank angle period. The second parameter is a target value of the crank angle period or a target value of the correlation value.