Abstract:
An automated system for rapid sequential photometric analysis of a collection of double fluorochrome stained lymphocyte specimens, useful for antibody screening or lymphocytotoxicity analysis. The specimens are sequentially alternately irradiated with light of two distinguishable wavelengths, producing fluorescence at two distinguishable wavelengths. The fluorescent emission light intensity for each irradiation of each specimen is measured using a photometer and computer. The computer controls the synchronization of the irradiation through alternately selected condenser sets with the sequential movement of specimens Into the optical path of the irradiating and detected light, and calculates the ratio of the light intensities emitted from each specimen at the two selected fluorescent light wavelengths. These ratios are compared against a control ratio (for lymphocytotoxicity analysis) to classify the specimen. Also described is a method of preparing specimens for such analysis, which requires that a complement be added to the first staining solution after the latter is applied to the specimens, then this combination agitated, and then the second staining solution added and the specimen incubated.
Abstract:
There is provided a data processing apparatus including: a data determination portion that specifies, in each of first and second light intensity distribution data, an analysis range corresponding to a storage area for storing a detection target, the first and second light intensity distribution data being acquired on the basis of light emitted from first and light sources to a detection area; and a mode selection portion that selects an operation mode of the data determination portion. The mode selection portion selects one of a first mode in which the data determination portion specifies the analysis range in each of the first light intensity distribution data and the second light intensity distribution data, and a second mode in which the data determination portion specifies the analysis range in the second light intensity distribution data on the basis of information on the analysis range of the first light intensity distribution data.
Abstract:
The invention relates to an in-line optical method of inspecting transparent or translucent containers (3) travelling between a light source (7) and a system (9) for taking images of the containers and analysing the images taken. According to the invention, the method comprises the steps of: illuminating each container (3) using the light source (7) having a light intensity variation according to a periodic pattern (7 1 ) of period T 1 along at least one first direction of variation (D); for each container (3), taking a number of images N, greater than or equal to three, of the container passing in front of the light source and occupying respectively N different positions along the length of the path; between each image capture, creating a relative shift between the container and the periodic pattern according to a direction of variation (D) of the periodic pattern (7 1 ); determining and applying a geometric transformation in at least N-1 images of a single container for at least one set of points belonging to the container, in order to align the pixels belonging to the container in the N successive images of a single container; for each container (3), constructing a phase image from the N adjusted images of the container; and analysing the phase image in order to deduce therefrom at least the presence of a light-refracting defect or the distribution quality of the material forming the container.
Abstract:
A tip for use in an optical detection system to analyze an analyte in a fluid sample drawn into the tip, using light reflected from a detection surface inside the tip that the analyte binds to, comprising a first detection surface and a second detection surface located in a same flow path with no controllable valve separating them, wherein the first and second detection surfaces have different surface chemistries.
Abstract:
An automated system for rapid sequential photometric analysis of a collection of double fluorochrome stained lymphocyte specimens, useful for antibody screening or lymphocytotoxicity analysis. The specimens are sequentially alternately irradiated with light of two distinguishable wavelengths, producing fluorescence at two distinguishable wavelengths. The fluorescent emission light intensity for each irradiation of each specimen is measured using a photometer and computer. The computer controls the synchronization of the irradiation through alternately selected condenser sets with the sequential movement of specimens Into the optical path of the irradiating and detected light, and calculates the ratio of the light intensities emitted from each specimen at the two selected fluorescent light wavelengths. These ratios are compared against a control ratio (for lymphocytotoxicity analysis) to classify the specimen. Also described is a method of preparing specimens for such analysis, which requires that a complement be added to the first staining solution after the latter is applied to the specimens, then this combination agitated, and then the second staining solution added and the specimen incubated.
Abstract:
Detection arrangement and method for detecting presence of a residue in a sample by determining color values of the sample, associated with the L*a*b color model, where a value of a composite parameter Z is calculated as follows: Z = wL + waa + wbb where wL, wa, and wb are weighting factors having a value depending on said residue and said sample, and a determination is made whether or not said sample comprises more or less than a predetermined amount of said residue in dependence on said value of said composite parameter Z. In a preferred embodiment, the arrangement is used to detect antibiotic residues, e.g. penicillin-G, in food products, e.g. milk, or body fluids, e.g. blood, urine.
Abstract:
Methods for programming an array scanner to scan a plurality of biopolymer arrays are provided. In the subject methods, individual scanning parameters for at least two different arrays of the plurality of arrays to be scanned are selected and input into the array scanner prior to scanning the plurality arrays. The programmed scanner then scans the plurality of arrays according to the pre-selected scanning parametersAlso provided are scanners programmed according to the subject methods, as well as computer programming that provides for programming of scanners according to the subject methods. The subject methods and compositions find use in a variety of different applications, including both genomics and proteomics applications.