摘要:
Object An objective is to provide an integrated circuit capable of performing an operation check test for a combination circuit present in sections that are not connected by a scan chain. Solution Means An integrated circuit includes a first signal processing circuit in which a plurality of first combination circuits and a plurality of scan FFs (Flip Flop) are connected in an order of a scan FF, a first combination circuit, and a scan FF; a second signal processing circuit including a second combination circuit different from the first combination circuit; a first selection circuit configured to select data from a scan FF on an input side of one of the plurality of first combination circuits or data from an input terminal of the second signal processing circuit, and to output the selected data to the second combination circuit; and a second selection circuit configured to select data from another one of the plurality of first combination circuits different from the one of the plurality of first combination circuits or data from the second combination circuit, and to output the selected data to the scan FF on an output side of the another one of the plurality of first combination circuits.
摘要:
Roughly described, a scan-based test architecture is optimized in dependence upon the circuit design under consideration. In one embodiment, a plurality of candidate test designs are developed. For each, a plurality of test vectors are generated in dependence upon the circuit design and the candidate test design, preferably using the same ATPG algorithm that will be used downstream to generate the final test vectors for the production integrated circuit device. A test protocol quality measure such as fault coverage is determined for each of the candidate test designs, and one of the candidate test designs is selected for implementation in an integrated circuit device in dependence upon a comparison of such test protocol quality measures. Preferably, only a sampling of the full set of test vectors that ATPG could generate, is used to determine the number of potential faults that would be found by each particular candidate test design.
摘要:
The invention includes an apparatus and method for dynamically isolating a portion of a scan path of a system-on-chip. In one embodiment, an apparatus includes a scan path and control logic. The scan path includes at least a first hierarchical level, where the first hierarchical level includes a plurality of components, and a second hierarchical level having at least one component. The second hierarchical level is adapted for being selected and deselected such that the second hierarchical level is active or inactive. The control logic is adapted to filter application of at least one control signal to the at least one component of the second hierarchical level in a manner for controlling propagation of data within the second hierarchical level independent of propagation of data within the first hierarchical level. In one embodiment, when the second hierarchical level is deselected, the control logic prevents data from being propagated within the second hierarchical level while data is propagated within the first hierarchical level. In one embodiment, the second hierarchical level may be used for independent, parallel testing while data continues to be propagated through the first hierarchical level.
摘要:
A faulty site identification apparatus (20) for identifying a faulty site in an integrated circuit, the apparatus includes a scan chain (12) that is constituted by coupling a plurality of sequential circuits (13), the scan chain outputs an output data array by shifting out setting data that is set to each of the plurality of sequential circuits (13); a setting section (22) that sets a predefined value to at least one sequential circuit (18) of the plurality of sequential circuits (13) as the setting data; and an identification section (24) that identifies a faulty site in the scan chain (12) on the basis of the output data array from the scan chain (12) and a location of the at least one sequential circuit (18) in the scan chain (12) . Thereby, any faulty site in the scan chain can be easily and quickly identified in the scan test.
摘要:
An embedded electronic sxstem built-in self-test controller architecture that facilitates testing and debugging of electronic circuits and in-system configuration of programmable devices. The system BIST controller architecture includes an embedded system BIST controller, an embedded memory circuit, an embedded IEEE 1149.1 bus, and an external controller connector. The system BIST controller is coupled to the memory circuit and the IEEE 1149.1 bus, and coupleable to an external test controller via the external controller connector. The external test controller can communicate over the IEEE 1149.1 bus to program the memory and/or the system BIST controller circuitry, thereby enabling scan vectors to be debugged by the external test controller and then downloaded into the memory for subsequent application to a unit under test by the system BIST controller.
摘要:
Flip-flops (FFs) to replace with scan FFs are selected for an integrated circuit designed at the gate level in order that the integrated circuit has an n-fold line-up structure. All FFs in an integrated circuit are temporarily selected as FFs to replace with scan FFs. Each FF to replace with a scan FF is temporarily selected as a FF to replace with a non-scan flip-flop. and the structure of the integrated circuit is checked if it has an-fold line-up structure, and if so, then the FF is selected as a FF to replace with a non-scan flip-flop. For an integrated circuit designed at the gate level, flip-flops to replace with scan flip-flops are selected in order that the integrated circuit has an n-fold line-up structure, without recognizing load/hold FFs as self-loop structure FF. Thereafter, FFs to replace with scan FFs are selected in such a way as to facilitate testing on load/hold FFs. For example, timeframe expansion on the basis of the state justification of load/hold FFs is carried out. From such timeframe expansion, FFs to replace with scan FFs are selected. This guarantees high fault efficiency in identifying FFs to replace with scan FFs. In generating test sequences for the post-fabrication testing of ICs, a buffer length for a buffer storing a test sequence is set and a test sequence for an integrated circuit is generated while sequentially compaction storing test sequences for respective faults in buffers with the set buffer length. This achieves a higher compaction rate than conventional technology.
摘要:
A method and apparatus for using weighted random patterns in a partial scan test. A computer generates deterministic patterns (304) on the partial scan design. Deterministic patterns that have the same number of capture clocks between adjacent scan loads are grouped together into pattern groups (308). A computer then determines a set of weights corresponding to each of the pattern groups (312). A tester then uses these weights as a filter to weighted random test patterns and applies these filtered weighted random test patterns along with the appropriate number of capture clock pulses to a device under test.
摘要:
A method and circuitry for testing in situ the components mounted on a circuit board. First, a component is removed from the board. A testing circuit is then installed in place of the removed component. The testing circuit allows test patterns to be applied to a selected component on the board from the board I/O pins. The selected component responses are collected by the testing circuit and applied to the board output pins. In this manner, individual components on the board can be tested in situ from pins on the board.
摘要:
A selfcontained method and structure for partitioning, testing and diagnosing a multichip packaging structure. The method comprises the steps of electronically inhibiting all chips in the multichip package except for the chip or chips under test, creating a signature of the chip or chips under test by generating and applying random patterns to the chip or chips under test (referred to as the unit under test) and comparing the signature obtained to a "good machine" simulation signature. The structure comprises means for accomplishing the above method steps. A preferred structure comprises an semiconductor substrate having redundant self test circuitry built in and chips having ECIPT circuitry mounted on the semiconductor substrate. Either all or a portion of the self test circuitry, including the required multiplexers, etc., may be incorporated into the semiconductor substrate. ECIPT circuitry may also be built into the substrate below each chip site. The combination of partitioning along chip boundaries, simple and inexpensive testing without external testers or mainframe computers, and enhanced diagnostics are made possible by the present invention.