摘要:
A process comprising removing surface layer materials from the wafer by inducing micro-fractures in the surface using a rotating pad and an abrasive slurry until all of the surface layer materials are removed; and chemically etching the surfaces of the wafer until all micro-fractures are removed therefrom. Edge materials are removed by abrasive tape. Wafer thickness reduction during recycling is less than 30 microns per cycle. One of the front and back surfaces of the wafer substrate is polished, any dots or grooves being on the non-polished side. The abrasive slurry contains more than 6 volume percent abrasive particles, and the abrasive slurry has a viscosity greater than about 2 cP. The preferred pad comprises an organic polymer having a hardness greater than about 45 on the Shore D scale, optimally a polyurethane. The pressure of the pad against the wafer surface preferably does not exceed about 3 psi. Preferably, the chemical etching solution contains potassium hydroxide. An acidic solution can then be applied to the wafer surface. The reclaimed silicon wafer has a matted side having etch pits which does not exceed 20 microns in width, an average roughness not exceeding 0.5 microns and a peak-to-valley roughness not exceeding 5 microns. Any laser markings from the original wafer are present on the matted side of the wafer.
摘要:
The invention relates to a device for chemical and mechanical polishing of the edge of a semiconductor substrate comprising a protruding residual topography in a peripheral region of the substrate resulting from a layer transfer process based on an ion implantation step, a bonding step and a detachment step, such as Smart-Cut ™ . To be able to remove this step-like region, the device comprises a polishing pad, wherein the polishing pad is arranged and configured such that its cross section in a plane perpendicular to the surface of a substrate holder is curved. The invention furthermore relates to a pad holder used in the device and a method for polishing a semiconductor substrate comprising a protruding residual topography.
摘要:
A removal composition and process for removing low-k dielectric material, etch stop material, and/or metal stack material from a rejected microelectronic device structure having same thereon. The removal composition includes hydrofluoric acid. The composition achieves at least partial removal of the material(s) from the surface of the microelectronic device structure having same thereon, for recycling and/or reuse of said structure, without damage to the underlying polysilicon or bare silicon layer employed in the semiconductor architecture.
摘要:
The embodiment of a substrate treatment device includes a treatment bath configured to store a treatment liquid in which a treatment object is to be immersed, a transport section configured to transport the treatment object, a temperature control section provided in at least one of the treatment bath and a position spaced from the treatment bath and configured to perform at least one of heating and cooling of the treatment object. the treatment object is at least one of: a laminated substrate including a device substrate, a support substrate, and an adhesive provided between the device substrate and the support substrate, the device substrate with the adhesive attached thereto, and the support substrate with the adhesive attached thereto.
摘要:
Removal compositions and processes for removing at least one material layer from a rejected microelectronic device structure having same thereon. The removal composition includes hydrofluoric acid. The composition achieves substantial removal of the material(s) to be removed while not damaging the layers to be retained, for reclaiming, reworking, recycling and/or reuse of said structure.
摘要:
A removal composition and process for removing low-k dielectric material, etch stop material, and/or metal stack material from a rejected microelectronic device structure having same thereon. The removal composition includes hydrofluoric acid. The composition achieves at least partial removal of the material(s) from the surface of the microelectronic device structure having same thereon, for recycling and/or reuse of said structure, without damage to the underlying polysilicon or bare silicon layer employed in the semiconductor architecture.
摘要:
A process comprising removing surface layer materials from the wafer by inducing micro-fractures in the surface using a rotating pad and an abrasive slurry until all of the surface layer materials are removed; and chemically etching the surfaces of the wafer until all micro-fractures are removed therefrom. Edge materials are removed by abrasive tape. Wafer thickness reduction during recycling is less than 30 microns per cycle. One of the front and back surfaces of the wafer substrate is polished, any dots or grooves being on the non-polished side. The abrasive slurry contains more than 6 volume percent abrasive particles, and the abrasive slurry has a viscosity greater than about 2 cP. The preferred pad comprises an organic polymer having a hardness greater than about 45 on the Shore D scale, optimally a polyurethane. The pressure of the pad against the wafer surface preferably does not exceed about 3 psi. Preferably, the chemical etching solution contains potassium hydroxide. An acidic solution can then be applied to the wafer surface. The reclaimed silicon wafer has a matted side having etch pits which does not exceed 20 microns in width, an average roughness not exceeding 0.5 microns and a peak-to-valley roughness not exceeding 5 microns. Any laser markings from the original wafer are present on the matted side of the wafer.
摘要:
The present invention relates to a method forfabricating a substrate (1) of semiconductor on insulatortype, comprising the following steps: - formation of an oxide layer (20) on a donor substrate (10) or a receiver substrate (30), - implantation of atomic species in the donor substrate so as to form a weakened zone(12), - bonding of the donor substrate onto the receiver substrate (30), the oxide layer (20) being at the bonding interface, - fracturing the donor substrate in the weakened zone (12) and transferring a layer of the donor substrate to the receiver substrate (30), - recycling of the remainder (2) of the donor substrate to form a receiver substrate (40) used for fabrication of a second semiconductor on insulator type 10 substrate. Before the oxidation step, a layer(14) of semiconducting materialis formed by epitaxy onthedonor substrate (10). In the implantation step, the weakened zone (12) formed in said epitaxied layer (14) so that the transferred layer is an epitaxied semiconducting material layer (140). And the donor substrate (10) is chosen comprising oxygen precipitates with a density of less than10 10 /cm 3 and/or a mean size of less than 500 nm.
摘要:
Removal compositions and processes for removing at least one material layer from a rejected microelectronic device structure having same thereon. The removal composition includes hydrofluoric acid. The composition achieves substantial removal of the material(s) to be removed while not damaging the layers to be retained, for reclaiming, reworking, recycling and/or reuse of said structure.
摘要:
In a cleaning composition for removing residual impurities from a substrate or an apparatus for forming an integrated circuit, and a method of removing the impurities using the cleaning composition, the cleaning composition includes about 4 to about 50 percent by weight of at least two compounds selected from the group consisting of citric acid, a citrate salt, a fluoride salt, hydrofluoric acid, hydrogen peroxide and ammonium persulfate, and a remainder of water. The cleaning composition may effectively remove residual impurities from the substrate or the apparatus, and may prevent the substrate or the apparatus from being recontaminated by the impurities.