SILICON CARBIDE SEMICONDUCTOR ELEMENT PRODUCTION METHOD

    公开(公告)号:EP3076422B1

    公开(公告)日:2018-10-31

    申请号:EP15815488.0

    申请日:2015-05-25

    IPC分类号: H01L21/28 H01L29/45 H01L29/16

    摘要: After a graphene layer (11) is formed on a surface of a p-type silicon carbide semiconductor region (1), a metal electrode (2) is formed on a surface of the graphene layer (11) to form a dipole at a junction interface of the p-type silicon carbide semiconductor region (1) and the metal electrode (2). As a result, a potential difference generated at the junction interface of the p-type silicon carbide semiconductor region (1) and the metal electrode (2) is reduced and a contact between the p-type silicon carbide semiconductor region (1) and the metal electrode (2) is achieved as a low-resistance ohmic contact. The p-type silicon carbide semiconductor region (1) has a carrier concentration of at least 1×10 16 /cm 3 . The graphene layer (11) has a single-layer structure or a stacked structure of three or less layers. Coverage of the graphene layer (11) on the p-type silicon carbide semiconductor region (1) is at least 30% of a surface area of the p-type silicon carbide semiconductor region (1). As a result, the low-resistance ohmic contact can be formed with high reproducibility.

    MANUFACTURING METHOD OF A SEMICONDUCTOR DEVICE

    公开(公告)号:EP2883239B8

    公开(公告)日:2018-02-14

    申请号:EP13802420.3

    申请日:2013-09-24

    IPC分类号: H01L21/04

    摘要: A manufacturing method of a semiconductor device includes: forming an electric metal layer by depositing metal as art electrode material on an inside of an opening of an insulating layer on a surface of an SiC semiconductor substrate; widening a gap between an inner wall surface in an opening formed in the insulating layer and the electrode metal layer by etching the insulating layer after the electrode metal layer is formed; and forming an ohmic contact between the electrode metal layer and the SiC semiconductor substrate by heating the SiC semiconductor substrate and the metal electrode layer after the insulating layer is etched.

    FORMATION OF OHMIC CONTACTS ON WIDE BAND GAP SEMICONDUCTORS
    5.
    发明公开
    FORMATION OF OHMIC CONTACTS ON WIDE BAND GAP SEMICONDUCTORS 审中-公开
    HERSTELLUNG OHMSCHER KONTAKTE AUF HALBLEITERN MIT BREITERBANDLÜCKE

    公开(公告)号:EP3134914A1

    公开(公告)日:2017-03-01

    申请号:EP14889954.5

    申请日:2014-04-23

    IPC分类号: H01L21/268

    摘要: Systems and methods for semiconductor wafer processing include irradiating a surface of a semiconductor wafer with a laser beam of sufficient energy to alter a band gap of semiconductor material thereby melting a portion of the wafer to generate a graphitic layer area. A metal layer is then depositing on the surface to create ohmic contacts at the area that where melted by the laser.

    摘要翻译: 用于半导体晶片处理的系统和方法包括用足够能量的激光束照射半导体晶片的表面以改变半导体材料的带隙,从而熔化晶片的一部分以产生石墨层面积。 然后将金属层沉积在表面上以在由激光熔化的区域处形成欧姆接触。

    SILICON CARBIDE SEMICONDUCTOR ELEMENT PRODUCTION METHOD
    7.
    发明公开
    SILICON CARBIDE SEMICONDUCTOR ELEMENT PRODUCTION METHOD 审中-公开
    HERSTELLUNGSVERFAHRENFÜREIN SILICIUMCARBID-HALBLEITERBAUELEMENT

    公开(公告)号:EP3076422A1

    公开(公告)日:2016-10-05

    申请号:EP15815488.0

    申请日:2015-05-25

    IPC分类号: H01L21/28

    摘要: After a graphene layer (11) is formed on a surface of a p-type silicon carbide semiconductor region (1), a metal electrode (2) is formed on a surface of the graphene layer (11) to form a dipole at a junction interface of the p-type silicon carbide semiconductor region (1) and the metal electrode (2). As a result, a potential difference generated at the junction interface of the p-type silicon carbide semiconductor region (1) and the metal electrode (2) is reduced and a contact between the p-type silicon carbide semiconductor region (1) and the metal electrode (2) is achieved as a low-resistance ohmic contact. The p-type silicon carbide semiconductor region (1) has a carrier concentration of at least 1×10 16 /cm 3 . The graphene layer (11) has a single-layer structure or a stacked structure of three or less layers. Coverage of the graphene layer (11) on the p-type silicon carbide semiconductor region (1) is at least 30% of a surface area of the p-type silicon carbide semiconductor region (1). As a result, the low-resistance ohmic contact can be formed with high reproducibility.

    摘要翻译: 在p型碳化硅半导体区域(1)的表面上形成石墨烯层(11)之后,在石墨烯层(11)的表面上形成金属电极(2),以在连接处形成偶极子 p型碳化硅半导体区域(1)和金属电极(2)的界面。 结果,在p型碳化硅半导体区域(1)和金属电极(2)的接合界面处产生的电位差减小,并且p型碳化硅半导体区域(1)和 金属电极(2)被实现为低电阻欧姆接触。 p型碳化硅半导体区域(1)的载流子浓度为1×10 16 / cm 3以上。 石墨烯层(11)具有三层或更少层的单层结构或堆叠结构。 p型碳化硅半导体区域(1)上的石墨烯层(11)的覆盖率为p型碳化硅半导体区域(1)的表面积的至少30%。 结果,可以以高再现性形成低电阻欧姆接触。

    SILICON CARBIDE SEMICONDUCTOR DEVICE, AND MANUFACTURING METHOD FOR SAME
    10.
    发明公开
    SILICON CARBIDE SEMICONDUCTOR DEVICE, AND MANUFACTURING METHOD FOR SAME 审中-公开
    碳化硅半导体器件及其制造方法

    公开(公告)号:EP2927962A1

    公开(公告)日:2015-10-07

    申请号:EP13859209.2

    申请日:2013-10-21

    摘要: A first main surface (P1) of a silicon carbide substrate (10) has a flat surface (FT) located in an element portion (CL) and a side wall surface (ST) located in a termination portion (TM). The silicon carbide substrate (10) has an impurity layer (11) having a portion located at each of the flat surface (FT) of the first main surface (P1) and a second main surface (P2). On the flat surface (FT), a Schottky electrode (31) is in contact with the impurity layer (11). On the second main surface (P2), a counter electrode (42) is in contact with the impurity layer (11). An insulating film (21) covers the side wall surface (ST). The side wall surface (ST) is inclined by not less than 50° and not more than 80° relative to a {000-1} plane. This suppresses the leakage current of a silicon carbide semiconductor device (101).

    摘要翻译: 碳化硅衬底(10)的第一主表面(P1)具有位于元件部分(CL)中的平坦表面(FT)和位于终端部分(TM)中的侧壁表面(ST)。 碳化硅衬底(10)具有杂质层(11),该杂质层具有位于第一主表面(P1)和第二主表面(P2)的每个平坦表面(FT)处的部分。 在平坦表面(FT)上,肖特基电极(31)与杂质层(11)接触。 在第二主表面(P2)上,对电极(42)与杂质层(11)接触。 绝缘膜(21)覆盖侧壁面(ST)。 侧壁表面(ST)相对于{000-1}平面倾斜不小于50°且不大于80°。 这抑制了碳化硅半导体器件(101)的漏电流。