摘要:
A method of forming a focal plane array having at least one pixel (2) which is fabricated by: forming a first wafer having sensing material (3) provided on a surface, which is covered by a first sacrificial layer, the sensing material being a thermistor material and defining at least one pixel; providing supporting legs (7) for the at least one pixel within the first sacrificial layer, covering them with a further sacrificial layer and forming first conductive portions in the surface of the sacrificial layer that are in contact with the supporting legs; forming a second wafer (9) having read-out integrated circuit (ROIC), the second wafer being covered by a second sacrificial layer, into which is formed second conductive portions in contact with the ROIC; bringing the sacrificial oxide layers of the first wafer and second wafer together such that the first and second conductive portions are aligned and bonding them together such that the sensing material is transferred from the first wafer to the second wafer when a sacrificial bulk layer of the first wafer is removed; and removing the sacrificial oxide layers to release the at least one pixel, such that the supporting legs are arranged underneath it.
摘要:
A method of detecting the intensity of radiation emanating from an object 116 relative to a background level at a pixel detector 120 is disclosed herein. A resistive element 122 with a resistance dependent upon the intensity of radiation impinging the detector 120 and having first and second terminals is provided along with an integration element 124 coupled to the first terminal of the resistive element. The first terminal is set to a reference voltage. The radiation is then defocused such that the radiation impinging the detector 120 is proportional to the background radiation level and a first voltage is applied to the second terminal of the resistive element 122 such that the integration element 124 discharges to a background voltage level. Next, the radiation is focused such that the radiation impinging the detector 120 is proportional to the radiation emanating from the object 116 and a second voltage is applied to the second terminal of the resistive element 122 such that the integration element 124 charges to an output voltage Vo level. The output voltage Vo is then sensed. Other systems and methods are also disclosed.
摘要:
Système de conversion d'une image infrarouge en image visible ou proche infrarouge. Ce système comprend des moyens optiques (8 à 14) d'entrée et de sortie, un détecteur infrarouge (16) sur lequel est formée une image infrarouge d'une scène, un circuit (18) de lecture des signaux fournis par ce détecteur, un circuit de traitement des signaux du circuit de lecture, un émetteur (22) de lumière visible ou proche infrarouge pour fournir ladite image sous forme de lumière visible ou proche infrarouge, à partir des signaux du circuit de traitement, un circuit (24) d'adressage de l'émetteur, un substrat (26) dont une face constitue un plan focal commun aux moyens optiques d'entrée et de sortie. Le détecteur, les circuits de lecture, de traitement, et d'adressage et l'émetteur sont intégrés dans ce plan focal. Application en imagerie infrarouge.
摘要:
A light-receiving element includes an InP substrate 1, a light-receiving layer 3 having an MQW and located on the InP substrate 1, a contact layer 5 located on the light-receiving layer 3, a p-type region 6 extending from a surface of the contact layer 5 to the light-receiving layer, and a p-side electrode 11 that forms an ohmic contact with the p-type region. The light-receiving element is characterized in that the MQW has a laminated structure including pairs of an In x Ga 1-x As (0.38 ‰¤ x ‰¤ 0.68) layer and a GaAs 1-y Sb y (0.25 ‰¤ y ‰¤ 0.73) layer, and in the GaAs 1-y Sb y layer, the Sb content y in a portion on the InP substrate side is larger than the Sb content y in a portion on the opposite side.
摘要:
A light-receiving element includes an InP substrate 1, a light-receiving layer 3 having an MQW and located on the InP substrate 1, a contact layer 5 located on the light-receiving layer 3, a p-type region 6 extending from a surface of the contact layer 5 to the light-receiving layer, and a p-side electrode 11 that forms an ohmic contact with the p-type region. The light-receiving element is characterized in that the MQW has a laminated structure including pairs of an In x Ga 1-x As (0.38 ≤ x ≤ 0.68) layer and a GaAs 1-y Sb y (0.25 ≤ y ≤ 0.73) layer, and in the GaAs 1-y Sb y layer, the Sb content y in a portion on the InP substrate side is larger than the Sb content y in a portion on the opposite side.
摘要:
The present invention provides a solid state structure (2) for thermal sensing. The solid state structure comprises a thermistor layer (12) having quantum dots (QD) embedded in a barrier material (BM). Using such a structure, high temperature coefficient for a wide range of material combinations can be obtained. Further, such structures enable the realisation of efficient thermal detectors suitable for e.g. infrared detection applications.
摘要:
A method of detecting the intensity of radiation emanating from an object 116 relative to a background level at a pixel detector 120 is disclosed herein. A resistive element 122 with a resistance dependent upon the intensity of radiation impinging the detector 120 and having first and second terminals is provided along with an integration element 124 coupled to the first terminal of the resistive element. The first terminal is set to a reference voltage. The radiation is then defocused such that the radiation impinging the detector 120 is proportional to the background radiation level and a first voltage is applied to the second terminal of the resistive element 122 such that the integration element 124 discharges to a background voltage level. Next, the radiation is focused such that the radiation impinging the detector 120 is proportional to the radiation emanating from the object 116 and a second voltage is applied to the second terminal of the resistive element 122 such that the integration element 124 charges to an output voltage V o level. The output voltage V o is then sensed. Other systems and methods are also disclosed.
摘要:
A bolometer for detecting radiation in a spectral range is described herein. The bolometer includes an integrated circuit substrate 122 and a pixel body 120 spaced from the substrate 122 by at least one pillar 124. The pixel body 120 comprises an absorber material 132, such as titanium for example, for absorbing radiation in the spectral range, which may be 7 to 12 microns for example. The absorber material 132 heats the pixel body 120 to a temperature which is proportional to the absorbed radiation. An insulating material 134 is formed over the absorber material 132. In addition, a variable resistor material 136, possible amorphous silicon for example, with an electrical resistance corresponding to the temperature of the pixel body 120 is formed over said insulating layer 134. A current flows through the variable resistor material 136 substantially parallel to the integrated circuit substrate 122 for detection. Other systems and methods are also disclosed.